设有一均匀分布着电荷的半径为 $R$ 的球面, 其电荷密度 (即单位面积上的电荷量) 为 $\sigma$. 试求该球面所形成电场的电场强度及电势.

解答: 设 $P$ 距圆心的距离为 $r$, 不妨设 $P(r,0,0)$. 则 $$\beex \bea  {\bf E}(P)&=\cfrac{\sigma}{4\pi\ve_0}\int_{x^2+y^2+z^2=R^2} \cfrac{(x-r,y,z)}{[(x-r)^2+y^2+z^2]^\frac{3}{2}}\rd S\\ &=\cfrac{\sigma}{4\pi \ve_0} \sex{ \int_{x^2+y^2+z^2=R^2} \cfrac{x-r}{[(x-r)^2+y^2+z^2]^\frac{3}{2}}\rd S, 0,0}. \eea \eeex$$ 故在 $P$ 处的场强的方向为 $\vec{OP}$, 大小仅与 $|\vec{OP}|$ 有关. 据 Gauss 定理, $$\bex E\cdot 4\pi r^2=\int_{x^2+y^2+z^2=r^2} {\bf E}\cdot {\bf n}\rd S =\int_{x^2+y^2+z^2<r^2}\cfrac{\rho}{\ve_0}\rd V, \eex$$ $$\bex E(r)=\sedd{\ba{ll} 0,&r<R,\\ \cfrac{R^2\rho}{r^2\ve_0},&r>R. \ea} \eex$$ 电势 $$\bex \phi(x,y,z)=\sedd{\ba{ll} 0,&r<R,\\ -\int_R^r \cfrac{R^2\rho}{s^2\ve_0}\rd s =\cfrac{R^2\rho}{\ve_0}\sex{\cfrac{1}{r}-\cfrac{1}{R}},&r>R. \ea} \eex$$

[物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势的更多相关文章

  1. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  2. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  3. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  4. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  5. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  6. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

  7. [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程

    设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...

  8. [物理学与PDEs]第1章习题5 偶极子的电场强度

    试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...

  9. [物理学与PDEs]第5章习题10 多凸函数一个例子

    证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...

随机推荐

  1. Ubuntu18.04 安装jdk1.8

    1.oracle官网下载压缩包,点击链接. 2.解压 1 tar -zxvf jdk-8u171-linux-x64.tar.gz 3.移动到制定目录 ##将文件从下载目录 挪到/usr/local下 ...

  2. Django组件--forms组件(注册用)

    一.forms组件--校验类的使用 二.form组件--校验类的参数 三.forms组件校验的局部钩子--自定义校验规则(要看源码理解) 四.forms组件校验的全局钩子--校验form表单两次密码输 ...

  3. 网络二十四题 之 P2756 飞行员配对方案问题

    题目背景 第二次世界大战时期.. 题目描述 英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2 名飞行员,其中1 名是英国飞行员,另1名是外 ...

  4. .net core iis配置

    微软官方教程: https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore2x 在vs中创建.net cor ...

  5. Spring Boot:The field file exceeds its maximum permitted size of 1048576 bytes

    错误信息:The field file exceeds its maximum permitted size of 1048576 bytes原因是因为SpringBoot内嵌tomcat默认所能上传 ...

  6. Java连接数据库,及增删改查

    自定义连接数据库的util类 package com.shuzf.jdbc; import java.sql.Connection; import java.sql.DriverManager; im ...

  7. linux 下一些命令

    1. 后台执行命令 nohup  http://blog.csdn.net/liuyanfeier/article/details/62422742 2. 查看日志文件 格式:tailf logfil ...

  8. Linux下部署开源版“禅道”项目管理系统

    1.开源版安装包下载 [root@iZbp ~]# wget http://dl.cnezsoft.com/zentao/9.0.1/ZenTaoPMS.9.0.1.zbox_64.tar.gz 2. ...

  9. windows服务器nginx+php启动开源ecshop

    1,下载php,nginx,ECShop源码 2,解压php到指定目录(如:C:\php-7.2.6) 2.1,找到指定目录下文件php.ini-development复制重命名为php.ini 2. ...

  10. 【Android O】 Service AAA does not have a SELinux domain defined

    在init.AAA.rc里面添加了一个脚本启动的服务: service AAA /vendor/bin/sh /vendor/etc/AAA_spec.sh user root group root ...