比较运算符 CompareFilter.CompareOp
比较运算符用于定义比较关系,可以有以下几类值供选择:

  • EQUAL 相等
  • GREATER 大于
  • GREATER_OR_EQUAL 大于等于
  • LESS 小于
  • LESS_OR_EQUAL 小于等于
  • NOT_EQUAL 不等于

比较器 ByteArrayComparable
通过比较器可以实现多样化目标匹配效果,比较器有以下子类可以使用:

  • BinaryComparator 匹配完整字节数组
  • BinaryPrefixComparator 匹配字节数组前缀
  • BitComparator  不常用
  • NullComparator  不常用
  • RegexStringComparator 匹配正则表达式
  • SubstringComparator 匹配子字符串

1.多重过滤器--FilterList(Shell不支持)
FilterList代表一个过滤器链,它可以包含一组即将应用于目标数据集的过滤器,过滤器间具有“与”FilterList.Operator.MUST_PASS_ALL 和“或” FilterList.Operator.MUST_PASS_ONE 关系。

//结合过滤器,获取所有age在15到30之间的行
private static void scanFilter() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); // And
FilterList filterList = new FilterList(FilterList.Operator.MUST_PASS_ALL);
// >=15
SingleColumnValueFilter filter1 = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.GREATER_OR_EQUAL, "15".getBytes());
// =<30
SingleColumnValueFilter filter2 = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.LESS_OR_EQUAL, "30".getBytes());
filterList.addFilter(filter1);
filterList.addFilter(filter2); Scan scan = new Scan();
// set Filter
scan.setFilter(filterList); ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}

2. 列值过滤器--SingleColumnValueFilter
用于测试列值相等(CompareOp.EQUAL ),不等(CompareOp.NOT_EQUAL),或单侧范围 (如CompareOp.GREATER)。构造函数:
2.1.比较的关键字是一个字符数组(Shell不支持?)
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, byte[] value)

//SingleColumnValueFilter例子
private static void scanFilter01() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); SingleColumnValueFilter scvf = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.EQUAL, "18".getBytes());
Scan scan = new Scan();
scan.setFilter(scvf);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}

2.2.比较的关键字是一个比较器ByteArrayComparable
SingleColumnValueFilter(byte[] family, byte[] qualifier, CompareFilter.CompareOp compareOp, ByteArrayComparable comparator)

//SingleColumnValueFilter例子2 -- RegexStringComparator
private static void scanFilter02() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users");

   //值比较的正则表达式 -- RegexStringComparator
//匹配info:age值以"4"结尾
RegexStringComparator comparator = new RegexStringComparator(".4");
//第四个参数不一样
SingleColumnValueFilter scvf = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.EQUAL, comparator);
Scan scan = new Scan();
scan.setFilter(scvf);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):032:0> scan 'users',{FILTER=>"SingleColumnValueFilter('info','age',=,'regexstring:.4')"}
ROW COLUMN+CELL
xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=info:age, timestamp=1441998917568, value=24
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
3 row(s) in 0.0130 seconds
//SingleColumnValueFilter例子2 -- SubstringComparator
private static void scanFilter03() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //检测一个子串是否存在于值中(大小写不敏感) -- SubstringComparator
//过滤age值中包含'4'的RowKey
SubstringComparator comparator = new SubstringComparator("4");
//第四个参数不一样
SingleColumnValueFilter scvf = new SingleColumnValueFilter("info".getBytes(), "age".getBytes(), CompareOp.EQUAL, comparator);
Scan scan = new Scan();
scan.setFilter(scvf);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):033:0> scan 'users',{FILTER=>"SingleColumnValueFilter('info','age',=,'substring:4')"}
ROW COLUMN+CELL
xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=info:age, timestamp=1441998917568, value=24
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
3 row(s) in 0.0180 seconds

3.列名过滤器
由于HBase采用键值对保存内部数据,列名过滤器过滤一行的列名(ColumnFamily:Qualifiers)是否存在 , 对应前节所述列值的情况。

3.1.基于Columun Family列族过滤数据的FamilyFilter
FamilyFilter(CompareFilter.CompareOp familyCompareOp, ByteArrayComparable familyComparator)

注意:
1.如果希望查找的是一个已知的列族,则使用 scan.addFamily(family); 比使用过滤器效率更高.
2.由于目前HBase对多列族支持不完善,所以该过滤器目前用途不大.

//基于列族过滤数据的FamilyFilter
private static void scanFilter04() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //过滤 = 'address'的列族
//FamilyFilter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator("address".getBytes())); //过滤以'add'开头的列族
FamilyFilter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryPrefixComparator("add".getBytes())); Scan scan = new Scan();
scan.setFilter(familyFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):021:0> scan 'users',{FILTER=>"FamilyFilter(=,'binaryprefix:add')"}
ROW COLUMN+CELL
xiaoming column=address:city, timestamp=1441997498965, value=hangzhou
xiaoming column=address:contry, timestamp=1441997498911, value=china
xiaoming column=address:province, timestamp=1441997498939, value=zhejiang
xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
zhangyifei column=address:city, timestamp=1441997499108, value=jieyang
zhangyifei column=address:contry, timestamp=1441997499077, value=china
zhangyifei column=address:province, timestamp=1441997499093, value=guangdong
zhangyifei column=address:town, timestamp=1441997500711, value=xianqiao
3 row(s) in 0.0400 seconds

3.2.基于Qualifier列名过滤数据的QualifierFilter
QualifierFilter(CompareFilter.CompareOp op, ByteArrayComparable qualifierComparator)

说明:该过滤器应该比FamilyFilter更常用!

//基于Qualifier(列名)过滤数据的QualifierFilter
private static void scanFilter05() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //过滤列名 = 'age'所有RowKey
//QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator("age".getBytes())); //过滤列名 以'age'开头 所有RowKey(包含age)
//QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryPrefixComparator("age".getBytes())); //过滤列名 包含'age' 所有RowKey(包含age)
//QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new SubstringComparator("age")); //过滤列名 符合'.ge'正则表达式 所有RowKey
QualifierFilter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new RegexStringComparator(".ge")); Scan scan = new Scan();
scan.setFilter(qualifierFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):020:0> scan 'users',{FILTER=>"QualifierFilter(=,'regexstring:.ge')"}
ROW COLUMN+CELL
xiaoming column=info:age, timestamp=1441997971945, value=38
xiaoming01 column=info:age, timestamp=1441998917568, value=24
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
zhangyifei column=info:age, timestamp=1442247255446, value=18
5 row(s) in 0.0460 seconds

3.3.基于列名前缀过滤数据的ColumnPrefixFilter(该功能用QualifierFilter也能实现)
ColumnPrefixFilter(byte[] prefix) 
注意:一个列名是可以出现在多个列族中的,该过滤器将返回所有列族中匹配的列。

//ColumnPrefixFilter例子
private static void scanFilter06() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //匹配 以'ag'开头的所有的列
ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter("ag".getBytes()); Scan scan = new Scan();
scan.setFilter(columnPrefixFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):018:0> scan 'users',{FILTER=>"ColumnPrefixFilter('ag')"}
ROW COLUMN+CELL
xiaoming column=info:age, timestamp=1441997971945, value=38
xiaoming01 column=info:age, timestamp=1441998917568, value=24
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
zhangyifei column=info:age, timestamp=1442247255446, value=18
5 row(s) in 0.0280 seconds

3.4.基于多个列名前缀过滤数据的MultipleColumnPrefixFilter
MultipleColumnPrefixFilter 和 ColumnPrefixFilter 行为差不多,但可以指定多个前缀。

//MultipleColumnPrefixFilter例子
private static void scanFilter07() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //匹配 以'a'或者'c'开头 所有的列{二维数组}
byte[][] prefixes =new byte[][]{"a".getBytes(), "c".getBytes()};
MultipleColumnPrefixFilter multipleColumnPrefixFilter = new MultipleColumnPrefixFilter(prefixes ); Scan scan = new Scan();
scan.setFilter(multipleColumnPrefixFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):017:0> scan 'users',{FILTER=>"MultipleColumnPrefixFilter('a','c')"}
ROW COLUMN+CELL
xiaoming column=address:city, timestamp=1441997498965, value=hangzhou
xiaoming column=address:contry, timestamp=1441997498911, value=china
xiaoming column=info:age, timestamp=1441997971945, value=38
xiaoming column=info:company, timestamp=1441997498889, value=alibaba
xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=info:age, timestamp=1441998917568, value=24
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
zhangyifei column=address:city, timestamp=1441997499108, value=jieyang
zhangyifei column=address:contry, timestamp=1441997499077, value=china
zhangyifei column=info:age, timestamp=1442247255446, value=18
zhangyifei column=info:company, timestamp=1441997499039, value=alibaba
5 row(s) in 0.0430 seconds

3.5.基于列范围(不是行范围)过滤数据ColumnRangeFilter

  1. 可用于获得一个范围的列,例如,如果你的一行中有百万个列,但是你只希望查看列名从bbbb到dddd的范围
  2. 该方法从 HBase 0.92 版本开始引入
  3. 一个列名是可以出现在多个列族中的,该过滤器将返回所有列族中匹配的列

构造函数:
ColumnRangeFilter(byte[] minColumn, boolean minColumnInclusive, byte[] maxColumn, boolean maxColumnInclusive)
参数解释:

  • minColumn - 列范围的最小值,如果为空,则没有下限
  • minColumnInclusive - 列范围是否包含minColumn
  • maxColumn - 列范围最大值,如果为空,则没有上限
  • maxColumnInclusive - 列范围是否包含maxColumn
//ColumnRangeFilter例子
private static void scanFilter08() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //匹配 以'a'开头到以'c'开头(不包含c) 所有的列
ColumnRangeFilter columnRangeFilter = new ColumnRangeFilter("a".getBytes(), true, "c".getBytes(), false); Scan scan = new Scan();
scan.setFilter(columnRangeFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):016:0> scan 'users',{FILTER=>"ColumnRangeFilter('a',true,'c',false)"}
ROW COLUMN+CELL
xiaoming column=info:age, timestamp=1441997971945, value=38
xiaoming column=info:birthday, timestamp=1441997498851, value=1987-06-17
xiaoming01 column=info:age, timestamp=1441998917568, value=24
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
zhangyifei column=info:age, timestamp=1442247255446, value=18
zhangyifei column=info:birthday, timestamp=1441997498990, value=1987-4-17
5 row(s) in 0.0340 seconds

4.RowKey
当需要根据行键特征查找一个范围的行数据时,使用Scan的startRow和stopRow会更高效,但是,startRow和stopRow只能匹配行键的开始字符,而不能匹配中间包含的字符。当需要针对行键进行更复杂的过滤时,可以使用RowFilter。
构造函数:RowFilter(CompareFilter.CompareOp rowCompareOp, ByteArrayComparable rowComparator)

//RowFilter例子
private static void scanFilter09() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //匹配 行键包含'01' 所有的行
RowFilter rowFilter = new RowFilter(CompareOp.EQUAL, new SubstringComparator("01")); Scan scan = new Scan();
scan.setFilter(rowFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}
hbase(main):013:0> scan 'users',{FILTER=>"RowFilter(=,'substring:01')"}
ROW COLUMN+CELL
xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=address:country, timestamp=1442000228945, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming01 column=info:age, timestamp=1441998917568, value=24
1 row(s) in 0.0190 seconds

5.PageFilter(Shell不支持?)
指定页面行数,返回对应行数的结果集。
需要注意的是,该过滤器并不能保证返回的结果行数小于等于指定的页面行数,因为过滤器是分别作用到各个region server的,它只能保证当前region返回的结果行数不超过指定页面行数。
构造函数:PageFilter(long pageSize)

//PageFilter例子
private static void scanFilter10() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //从RowKey为 "xiaoming" 开始,取3行(包含xiaoming)
PageFilter pageFilter = new PageFilter(3L); Scan scan = new Scan();
scan.setStartRow("xiaoming".getBytes());
scan.setFilter(pageFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}

注意:由于该过滤器并不能保证返回的结果行数小于等于指定的页面行数,所以更好的返回指定行数的办法是ResultScanner.next(int nbRows),即:

//上面Demo的改动版
private static void scanFilter11() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //从RowKey为 "xiaoming" 开始,取3行(包含xiaoming)
//PageFilter pageFilter = new PageFilter(3L); Scan scan = new Scan();
scan.setStartRow("xiaoming".getBytes());
//scan.setFilter(pageFilter);
ResultScanner rs = ht.getScanner(scan);
//指定返回3行数据
for(Result result : rs.next(3)){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}

6.SkipFilter(Shell不支持)
根据整行中的每个列来做过滤,只要存在一列不满足条件,整行都被过滤掉。
构造函数:SkipFilter(Filter filter)

例如,如果一行中的所有列代表的是不同物品的重量,则真实场景下这些数值都必须大于零,我们希望将那些包含任意列值为0的行都过滤掉。在这个情况下,我们结合ValueFilter和SkipFilter共同实现该目的:
scan.setFilter(new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL,new BinaryComparator(Bytes.toBytes(0))));

//SkipFilter例子
private static void scanFilter12() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //跳过列值中包含"24"的所有列
SkipFilter skipFilter = new SkipFilter(new ValueFilter(CompareOp.NOT_EQUAL, new BinaryComparator("24".getBytes()))); Scan scan = new Scan();
scan.setFilter(skipFilter);
ResultScanner rs = ht.getScanner(scan);
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
}
}
ht.close();
}

7.Utility--FirstKeyOnlyFilter
该过滤器仅仅返回每一行中第一个cell的值,可以用于高效的执行行数统计操作。估计实战意义不大。
构造函数:public FirstKeyOnlyFilter()

//FirstKeyOnlyFilter例子
private static void scanFilter12() throws IOException,
UnsupportedEncodingException {
Configuration conf = HBaseConfiguration.create();
conf.set("hbase.rootdir", "hdfs://ncst:9000/hbase");
conf.set("hbase.zookeeper.quorum", "ncst");
HTable ht = new HTable(conf, "users"); //返回每一行中的第一个cell的值
FirstKeyOnlyFilter firstKeyOnlyFilter = new FirstKeyOnlyFilter(); Scan scan = new Scan();
scan.setFilter(firstKeyOnlyFilter);
ResultScanner rs = ht.getScanner(scan);
int i = 0;
for(Result result : rs){
for(Cell cell : result.rawCells()){
System.out.println(new String(CellUtil.cloneRow(cell))+"\t"
+new String(CellUtil.cloneFamily(cell))+"\t"
+new String(CellUtil.cloneQualifier(cell))+"\t"
+new String(CellUtil.cloneValue(cell),"UTF-8")+"\t"
+cell.getTimestamp());
i++;
}
}
//输出总的行数
System.out.println(i);
ht.close();
}
hbase(main):009:0> scan 'users',{FILTER=>'FirstKeyOnlyFilter()'}
ROW COLUMN+CELL
xiaoming column=address:city, timestamp=1441997498965, value=hangzhou
xiaoming01 column=address:contry, timestamp=1442000277200, value=\xE4\xB8\xAD\xE5\x9B\xBD
xiaoming02 column=info:age, timestamp=1441998917594, value=24
xiaoming03 column=info:age, timestamp=1441998919607, value=24
zhangyifei column=address:city, timestamp=1441997499108, value=jieyang
5 row(s) in 0.0240 seconds

HBase Filter及对应Shell的更多相关文章

  1. HBase filter shell操作

    创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value) -- sf: column family ...

  2. hbase的常用的shell命令&hbase的DDL操作&hbase的DML操作

    前言 笔者在分类中的hbase栏目之前已经分享了hbase的安装以及一些常用的shell命令的使用,这里不仅仅重新复习一下shell命令,还会介绍hbase的DDL以及DML的相关操作. hbase的 ...

  3. hbase各种遍历查询shell语句 包含过滤组合条件

    import java.io.IOException; import java.util.ArrayList; import java.util.Arrays; import java.util.Li ...

  4. HBase Filter 过滤器之RowFilter详解

    前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考.RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase ...

  5. HBase Filter 过滤器之FamilyFilter详解

    前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.FamilyFilter 基于列族进行过滤,在工作中涉及 ...

  6. HBase Filter 过滤器之QualifierFilter详解

    前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...

  7. HBase Filter 过滤器之 ValueFilter 详解

    前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.ValueFilter 基于列值进行过滤,在工作中涉及到需 ...

  8. 一个自定义 HBase Filter -“通过RowKeys来高性能获取数据”

    摘要: 大家在使用HBase和Solr搭建系统中经常遇到的一个问题就是:“我通过SOLR得到了RowKeys后,该怎样去HBase上取数据”.使用现有的Filter性能差劲,网上也没有现成的自定义Fi ...

  9. 生成HFile文件后倒入数据出现Caused by: java.lang.ClassNotFoundException: org.apache.hadoop.hbase.filter.Filter

    数据导入的时候出现: at java.lang.Class.getDeclaredMethods0(Native Method) at java.lang.Class.privateGetDeclar ...

随机推荐

  1. 写一篇博文介绍JSP

    一.JSP概述 JSP全名为Java Server Pages,中文名叫java服务器页面,其根本是一个简化的Servlet设计,它是由Sun Microsystems公司倡导.许多公司参与一起建立的 ...

  2. python数据分析算法(决策树2)CART算法

    CART(Classification And Regression Tree),分类回归树,,决策树可以分为ID3算法,C4.5算法,和CART算法.ID3算法,C4.5算法可以生成二叉树或者多叉树 ...

  3. oracle两种分页查询

    第一种: SELECT * FROM (SELECT A.*, ROWNUM RN FROM (SELECT * FROM table_name) A ) ; 第二种: SELECT * FROM ( ...

  4. AWS的EC2实例搭建服务器使用stackoverflow教程

    作为一个技术开发工程师, 一个给力的问题解决方案搜索引擎是十分必要的, stackoverflow作为一个码农必备神器, 存在访问不稳定,有时候打不开的问题,下面介绍如何在亚马逊云服务器上搭建属于自己 ...

  5. 编程填空:第i位替换

    编程填空:第i位替换 OpenJudge 总时间限制:1000ms 内存限制:1024kB 描述:写出函数中缺失的部分,使得函数返回值为一个整数,该整数的第i位和m的第i位相同,其他位和n相同. 请使 ...

  6. go语言生成一张正弦图

    先看效果: package main import ( "image" "image/color" "image/png" "lo ...

  7. html-webpack-plugin插件使用时参数配置

    ERROR in multi main Module not found: Error: Cannot resolve 'file' or 'directory' ./public/pages/ind ...

  8. eslint的安装与使用

    什么是 ESLint ESLint(中文站点)是一个开源的 JavaScript 代码检查工具,使用 Node.js 编写,由 Nicholas C. Zakas 于 2013 年 6 月创建.ESL ...

  9. 再谈HTTP2性能提升之背后原理—HTTP2历史解剖

    即使千辛万苦,还是把网站升级到http2了,遇坑如<phpcms v9站http升级到https加http2遇到到坑>. 因为理论相比于 HTTP 1.x ,在同时兼容 HTTP/1.1 ...

  10. 阿里云新老用户购买 2核8G云服务器5M带宽

    这次阿里云活动的力度还是很大的,2核8G云服务器5M带宽 3年才2070 ,还是很值的购买的. 也放一个我的团战队连接,欢迎大家一起拼低价 https://m.aliyun.com/act/team1 ...