Problem

SPOJ-NORMA2 & bzoj3745

题意概要:给定一个正整数序列 \(\{a_i\}\),求

\[\sum_{i=1}^n\sum_{j=i}^n(j-i+1)\min(a_i,a_{i+1},\cdots,a_j)\max(a_i,a_{i+1},\cdots a_j)
\]

\(n\leq 5\times 10^5\)

Solution

这题正解是一个完美的 \(O(n\log n)\) 分治,但比较麻烦,鉴于这个分治做法已经漫天飞了,所以这里不讲那个算法

我在考场上在最后二十分钟想到了并打出了另一个分治做法,非常很好写跑得也很快,最终可以 AC

可以考虑对于一个序列 \(\{a_i\}\),找到其最大值 \(mx\) 与最小值 \(mi\),有大量区间都是以这两点为最值点的,而同时这些区间的左右端点分别都是连续的,所以可以考虑将这些区间一起计算

具体的,若找到的最大值与最小值分别在 \(p_1,p_2\) 取到(不妨设 \(p_1\leq p_2\)),则以这两者为最值点的区间 \([l,r]\) 满足 \(1\leq l\leq p_1,p_2\leq r\leq n\),这些区间的长度和可以 \(O(1)\) 算出,也即可以 \(O(1)\) 算出这些区间的贡献

进一步的,需要加上其他不是 同时以这两者为最值点 的区间贡献。设统计左右端点都在 \([l,r]\) 内的区间贡献也即刚刚这一步处理为函数 \(f(l,r)\),则其他区间的贡献即 \(f(l,p_2-1)+f(p_1+1,r)-f(p_1+1,p_2-1)\)(由于前面两个式子中重复计算了左右端点都在 \([p_1+1,p_2-1]\) 内的区间贡献,所以需要第三个函数去减去这部分多余的贡献)

所以现在可以得到一个基本的做法(统计 \([l,r]\) 区间):

  • \(O(1)\) 找到区间最大最小值所在位置 \(p_1,p_2(p_1\leq p_2)\)
  • \(O(1)\) 统计左端点在 \([l,p_1]\)、右端点在 \([p_2,r]\) 的区间的贡献
  • 分治统计区间 \([l,p_2-1],[p_1+1,r]\),并减去 \([p_1+1,p_2-1]\) 的答案

这个做法慢成龟龟,然后我灵机一动:分治下去的区间不是会继续使用当前最值点为最值点吗?(即 \([l,p_2-1]\) 会使用 \(p_1\) 为最值点,进而可能再次调用区间 \([p_1+1,p_2-1]\),这里的统计就冗余了,如果加个记忆化那么原来每次分出三个区间就可以均摊成两个了……)

然后就加了一下 \(map\) 的记忆化,极限数据只需要 \(0.4s\)

之前证了一波伪的复杂度 \(O(n\log n)\),后来被同校 dalao 精心卡掉了 虽然构造了一个多小时

实际上复杂度是 \(O(n^2\log n)\) 的,那个 \(\log\) 还是 \(map\) 的复杂度 没错这是个暴力,但很难卡满,在考试中、spoj和bzoj上都没能卡掉我♪(*)

实际运行效率很高,未经st表优化的代码在bzoj上跑到 \(\mathrm{rank6}\),比我写的正解快一倍,同时代码也很短很好写 毕竟是在十分钟内写完调完的,只有 \(\mathrm{1.2k}\)

Code

由于想到这个解法时时间紧迫,没来得及写 \(st\) 表做 \(\mathrm{rmq}\) 但还是过掉了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; template <typename _tp> inline _tp read(_tp&x){
char c11=getchar(),ob=0;x=0;
while(c11!='-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=1;
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
} const int N=501000,p=1e9,inf=0x3f3f3f3f;
int a[N],n; map <int,int> mp[N]; inline int getsum(int l,int r){return 1ll*(l+r)*(r-l+1)/2%p;}
inline int qm(int x){while(x<0)x+=p;while(x>=p)x-=p;return x;} int force(int l,int r){
int res(0);
for(int i=l;i<=r;++i){
int mx=-inf,mi=inf;
for(int j=i;j<=r;++j){
mx=max(mx,a[j]);
mi=min(mi,a[j]);
res=qm(res+1ll*(j-i+1)*mi%p*mx%p);
}
}return res;
} int solve(int l,int r){
if(l>r)return 0;
if(mp[l].find(r)!=mp[l].end())
return mp[l][r];
if(r-l<=10)
return mp[l][r]=force(l,r);
int mx=-inf,mxd;
int mi=inf,mid;
for(int i=l;i<=r;++i){
if(a[i]>mx)mx=a[i],mxd=i;
if(a[i]<mi)mi=a[i],mid=i;
}
int L=min(mxd,mid),dl=L-l+1;
int R=max(mxd,mid),dr=r-R+1;
int dx=R-L-1,res(0);
if(dl>dr)swap(dl,dr);
for(int i=1;i<=dl;++i)
res=qm(res+getsum(i+dx+1,i+dx+dr));
res=1ll*res*mx%p*mi%p;
return mp[l][r]=qm(res+qm(solve(l,R-1)+solve(L+1,r))-solve(L+1,R-1));
} int main(){
read(n);
for(int i=1;i<=n;++i)read(a[i]);
printf("%d\n",solve(1,n));
return 0;
}

题解-COCI-2015Norma的更多相关文章

  1. [SinGuLaRiTy] COCI 2011~2012 #2

    [SinGuLaRiTy-1008] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 测试题目 对于所有的题目:Time Limit:1s   ...

  2. 【题解】 Luogu P4312 / SP4155 [COCI 2009] OTOCI / 极地旅行社

    原题地址:P4312 [COCI 2009] OTOCI / 极地旅行社/SP4155 OTOCI - OTOCI lct入门难度的题,十分弱智(小蒟蒻说lct是什么,能吃吗?) bridge操作判联 ...

  3. COCI 2015、2016 1st round 题解(官方)

    官方题解: 官方代码: Code-KARTE: #include <cstdio> #include <iostream> #include <cstring> u ...

  4. BZOJ3188: [Coci 2011]Upit

    3188: [Coci 2011]Upit Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 72  Solved: 24[Submit][Status] ...

  5. [SinGuLaRiTy] COCI 2016~2017 #5

    [SinGuLaRiTy-1012] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 最近神犇喜欢考COCI...... 测试题目 对于所有的 ...

  6. COCI 2018/2019 CONTEST #2 T4 Maja T5Sunčanje Solution

    COCI 2018/2019 CONTEST #2 T4 T5 Solution abstract 花式暴力 #2 T5 Sunčanje 题意 按顺序给你1e5个长方形(左下角坐标&& ...

  7. bzoj 2223 [Coci 2009]PATULJCI

    [Coci 2009]PATULJCI Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1286  Solved: 553[Submit][Status ...

  8. [luogu]P4312 [COCI 2009] OTOCI / 极地旅行社(LCT)

    P4312 [COCI 2009] OTOCI / 极地旅行社 题目描述 不久之前,Mirko建立了一个旅行社,名叫"极地之梦".这家旅行社在北极附近购买了N座冰岛,并且提供观光服 ...

  9. 【题解】Dvoniz [COCI2011]

    [题解]Dvoniz [COCI2011] 没有传送门,只有提供了数据的官网. [题目描述] 对于一个长度为 \(2*K\) 的序列,如果它的前 \(K\) 个元素之和小于等于 \(S\) 且后 \( ...

  10. 题解:[COCI2011-2012#5] BLOKOVI

    题解:[COCI2011-2012#5] BLOKOVI Description PDF : https://hsin.hr/coci/archive/2011_2012/contest5_tasks ...

随机推荐

  1. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  2. flutter 监听返回键

    ### 监听手机返回键(双击退出) ``` import 'package:fluttertoast/fluttertoast.dart'; //提示插件 class WillPopScopeTest ...

  3. 使用jquery移除前面通过onclick绑定的元素的事件,然后重新绑定别的函数来执行onclick事件。

    http://caibaojian.com/css3/experience/bugs.htm 使用jquery移除前面通过onclick绑定的元素的事件,然后重新绑定别的函数来执行onclick事件. ...

  4. rk3128 手动挂载 U 盘

    2019-04-16 关键字: RK . 挂载.U盘 笔者手里有一块非常原生的运行 Android 4.4 操作系统的 RK3128 开发板.原生到各种功能模块都不能用的地步.今天就遇到一个不按常理出 ...

  5. macTypeError: slice indices must be integers or None or have an index method

    一般是由于Numpy的版本太高了(1.12对此进行了调整),有的时候传入numpy array里面的索引可能是浮点数,这个时候最好检查一下索引强制转换为int类型 或者安装低版本的numpy sudo ...

  6. youtube上一些随手就来的牛逼颜色

    网页背景色: 白色背景 #f6f5f7:替代了原来的纯白,不那么刺眼,很和谐 黑色背景 #262626:一种很好看的黑色背景 其他颜色: 圆形边框线:#ddd;

  7. 重学JavaScript - 数组

    作者:狐狸家的鱼 GitHub:surRimn 整理自MDN文档 数组 数组是一种类列表对象,长度和元素类型不固定. 描述 访问数组 JavaScript数组的索引是从0开始的,第一个元素的索引为0, ...

  8. css解决内联元素间的空白间隔

    在内联元素的父级元素上设置font-size: 0px;即可.例如: <div class="wrap"> <ul> <li class=" ...

  9. JS设置Cookie过期时间

    //JS操作cookies方法! //写cookies function setCookie(name,value) { var Days = 30; var exp = new Date(); ex ...

  10. linux device drivers ch03

    ch03.字符设备驱动程序 编写驱动程序的第一步就是定义驱动程序为用户程序提供的能力(机制).接下来以scull(“Simple Character Utility for Loading Local ...