【bzoj 3495】PA2010 Riddle
Description
有n个城镇被分成了k个郡,有m条连接城镇的无向边。要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都。
Input
第一行有三个整数,城镇数n(1<=n<=10^6),边数m(0<=m<=10^6),郡数k(1<=k<=n)。
接下来m行,每行有两个整数ai和bi(ai≠bi),表示有一条无向边连接城镇ai和bi。
接下来k行,第j行以一个整数wj开头,后面是wj个整数,表示第j个郡包含的城镇。
Output
若有解输出TAK,否则输出NIE。
每个点 $x$ 拆成两对点,$x$ 代表选择 $x$ 为首都,$x+n$ 表示不选择 $x$ 为首都,$x+2n$ 表示 $x$ 的前缀已包含首都,$x+3n$表示 $x$ 的前缀不包含首都。
对于每一条原图中无向边 $(x,y)$ ,因为至少有一个端点为首都,连边 $(x+n,y)$ ,$(y+n,x)$。
对于每一个点 $x$ ,连边 $(x,x+2n)$ ,$(x+3n,x+n)$。
对于每一个点 $x$ 与它的上一个点 $last$ ,连边方式如下:$(last+2n,x+2n)$,$(x+3n,last+3n)$,$(last+2n,x+n)$,$(x,last+3n)$。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=4e6+;
int n,m,k,cnt,x,y,last,tim,top,color;
int first[N],dfn[N],low[N],sta[N],c[N];
bool vis[N];
struct edge{int to,next;}e[N*];
void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void tarjan(int x)
{
low[x]=dfn[x]=++tim;
sta[++top]=x;vis[x]=true;
for(int i=first[x];i;i=e[i].next)
{
int to=e[i].to;
if(!dfn[to])tarjan(to),low[x]=min(low[x],low[to]=min(low[x],low[to]));
else if(vis[to])low[x]=min(low[x],dfn[to]);
}
if(low[x]==dfn[x])
{
color++;
while(sta[top]!=x)vis[sta[top]]=false,c[sta[top--]]=color;
vis[x]=false;c[x]=color;top--;
}
}
bool check()
{
for(int i=;i<=n;i++)
if(c[i]==c[i+n]||c[i+*n]==c[i+*n])return false;
return true;
}
int main()
{
n=read();m=read();k=read();
for(int i=;i<=m;i++)
{
x=read();y=read();
ins(x+n,y);ins(y+n,x);
}
for(int i=;i<=k;i++)
{
x=read();last=;
for(int j=;j<=x;j++)
{
y=read();
ins(y,y+*n);ins(y+*n,y+n);
if(last)
{
ins(last+*n,y+*n);
ins(y+*n,last+*n);
ins(last+*n,y+n);
ins(y,last+*n);
}
last=y;
}
}
for(int i=;i<=*n;i++)if(!dfn[i])tarjan(i);
if(check())printf("TAK");
else printf("NIE");
return ;
}
【bzoj 3495】PA2010 Riddle的更多相关文章
- 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护
线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...
- LCA 【bzoj 4281】 [ONTAK2015]Związek Harcerstwa Bajtockiego
[bzoj 4281] [ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点. ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
- 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3940 Solved: 1736 Description ...
- 【BZOJ 2132】圈地计划 && 【7.22Test】计划
两种版本的题面 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土 ...
- -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...
- 【BZOJ 1032】 [JSOI2007]祖码Zuma
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1032 [题意] [题解] /* 设f[i][j]表示从第i个珠子开始的j个珠子被消除; ...
随机推荐
- jupyter notebook修改默认路径和浏览器
1.jupyter notebook --generate-config 2.修改jupyter_notebook_config.py配置文件 3.修改默认路径: c.NotebookApp.note ...
- 类Math
概述 java.lang.Math 类包含用于执行基本数学运算的方法,如初等指数.对数.平方根和三角函数.类似这样的工具 类,其所有方法均为静态方法,并且不会创建对象,调用起来非常简单. 常用方法 ...
- Collections算法类
Collections类定义了一系列用于操作集合的静态方法. 常用方法: 1.sort():排序(默认是升序排列,降序实现方法) 如果ArrayList的泛型指定为String int等类型,可以通过 ...
- Android Studio自定义注释模板
一.自定义新建文件时生成的注释 setting->Editor->File and Code Templates->Includes->File Header,在这里输入自定义 ...
- clipboardjs复制到粘贴板
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat=&qu ...
- C#之重写与隐藏
一 重写与隐藏区别 (1)方法重写:就是在基类中的方法用virtual关键字来标识,然后在继承类中对该类进行重写(override),这样基类中的方法已经被重写了,已经失去了功能了.当让基类的对象的引 ...
- mysql5.6.x 字符集修改
1 安装好mysql5.6.x 之后,修改字符集配置为utf8才能支持中文,因为默认为latin1 查看mysql字符集命令: SHOW VARIABLES LIKE 'char%' 2 修改配置文件 ...
- sql 语句中as的用法和作用
我们的Sql语句在很多数据库中都是通用的,比如像Mysql数据库 Access数据库. Oracle数据库. Sqlite数据库 .甚至在我们的Excel中也可以使用Sql语句. 在我的数据库中有u ...
- elk部署之前注意事项
注意事项: 1.不能使用root用户登录,需要是用root 之外的用户登录到系统. 2.centos系统 运行内存不能小于2G,若低于2G需要修改jvm. vi {jvm_home}/config/ ...
- Flask 构建微电影视频网站(五)
基于角色的访问控制 权限管理 class AuthForm(FlaskForm): name = StringField( label='权限', validators=[ DataRequired( ...