洛谷 P5019 铺设道路

题目描述

春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路。

铺设道路的主要工作是填平下陷的地表。整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度为 \(d_i\)。

春春每天可以选择一段连续区间 \([L,R]\) ,填充这段区间中的每块区域,让其下陷深度减少 \(1\)。在选择区间时,需要保证,区间内的每块区域在填充前下陷深度均不为 \(0\) 。

春春希望你能帮他设计一种方案,可以在最短的时间内将整段道路的下陷深度都变为 \(0\) 。


输入输出格式

输入格式:

输入文件包含两行,第一行包含一个整数 \(n\),表示道路的长度。 第二行包含 \(n\) 个整数,相邻两数间用一个空格隔开,第 \(i\)个整数为 \(d_i\)。

输出格式:

输出文件仅包含一个整数,即最少需要多少天才能完成任务。


输入输出样例

输入样例#1:

6

4 3 2 5 3 5

输出样例#1:

9


说明

【样例解释】

一种可行的最佳方案是,依次选择: \([1,6]\)、\([1,6]\)、\([1,2]\)、\([1,1]\)、\([4,6]\)、\([4,4]\)、\([4,4]\)、\([6,6]\)、\([6,6]\)。

【数据规模与约定】

对于 \(30\%\) 的数据,\(1 ≤ n ≤ 10\) ;

对于 \(70\%\)的数据,\(1 ≤ n ≤ 1000\) ;

对于 \(100\%\) 的数据,\(1 ≤ n ≤ 100000\) , \(0 ≤ d_i ≤ 10000\)。


思路

CCF我抄我自己经典题目,一道简单贪心,和积木大赛一个样

代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#include<algorithm>
#include<cstring>
#include<string>
#define N 100000+10
#define INF 0x3f3f3f3f
using namespace std; inline int read() {
char c=getchar();
int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9')x=x*10+c-48,c=getchar();
return x*f;
} int n,a[N];
long long ans=0; int main() {
freopen("road.in","r",stdin);
freopen("road.out","w",stdout);
n=read();
for(int i=1; i<=n; i++)
a[i]=read();
for(int i=2; i<=n; i++)
if(a[i]>a[i-1])
ans+=a[i]-a[i-1];
printf("%d\n",ans+a[1]);
fclose(stdin);
fclose(stdout);
return 0;
}

洛谷 P5019 铺设道路的更多相关文章

  1. NOIP2018&2013提高组T1暨洛谷P5019 铺设道路

    题目链接:https://www.luogu.org/problemnew/show/P5019 花絮:普及蒟蒻终于A了一道提高的题目?emm,写一篇题解纪念一下吧.求过! 分析: 这道题我们可以采用 ...

  2. 洛谷 P5019 铺设道路 & [NOIP2018提高组](贪心)

    题目链接 https://www.luogu.org/problem/P5019 解题思路 一道典型的贪心题. 假设从左往右填坑,如果第i个深与第i+1个,那么第i+1个就不需要额外填: 如果第i+1 ...

  3. 洛谷P5019 铺设道路 题解 模拟/贪心基础题

    题目链接:https://www.luogu.org/problemnew/show/P5019 这道题目是一道模拟题,但是它有一点贪心的思想. 我们假设当前最大的深度是 \(d\) ,那么我们需要把 ...

  4. 洛谷 P5019 铺设道路(差分)

    嗯... 题目链接:https://www.luogu.org/problem/P5019 首先简化一下题意: 给定一个长为N的数组,每次操作可以选择一个区间减去1,问最少多少次操作可以将数组中的数全 ...

  5. 题解【洛谷P5019】[NOIP2018]铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  6. 洛谷P5019 [NOIP2018 提高组] 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...

  7. 【洛谷P5019】铺设道路

    题目链接 众所周知,这道题和积木大赛是同一道题 题意就是给出一段自然数序列,每次操作\((L,R)\)把区间\([L,R]\)的数全部减一,不允许出现负数,问把序列变为零的最小操作次数 贪心做法 样例 ...

  8. [NOIP2014] 提高组 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  9. NOIP2014 day2 T2 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

随机推荐

  1. Win10问题汇总

    1.重置网络连接命令 netsh winsock reset ipconfig /flushdns 2.WIN10去除我的电脑上面的6个文件夹 把下面代码复制,保存到.reg中,然后执行即可(修改注册 ...

  2. 推荐一个Monokai风格的EditPlus配色方案

    如何配置 找到EditPlus的配置文件editplus_u.ini,该文件默认在:系统盘:\Users\用户名\AppData\Roaming\EditPlus目录中.将其中的内容替换为如下即可: ...

  3. java并发请求多个接口,顺序返回

    最近有个需求,从一个api拿数据,但是api时间参数又有范围限制,因此需要自己将时间分成多段,多次请求api,并且最终返回的数据需要保持原有的顺序 代码如下: package com.test001. ...

  4. ADB——命令大全

    基本语法 基本语法 adb [-d|-e|-s <serialNumber>] <command> # serialNumber表示设备序列号,也可以是ip地址 # 如果只有一 ...

  5. 【Linux】-NO.160.Linux.1 -【升级Centos7】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  6. Centos上传下载命令

    [root@localhost ~]# rz -bash: rz: command not found //安装下载上传插件 [root@localhost ~]# yum -y install lr ...

  7. 一道有趣的JS问题

    function Foo() { getName = function () { alert (1); }; return this; } Foo.getName = function () { al ...

  8. windows10误删Administrator用户的家目录之后

    今天在玩Windows10的用户管理的时候,把Administrator用户给开启了,然后还用这个用户登录了系统. 结果就是,第一次登录的时候,闪过一条条初始化配置欢迎信息,Windows系统为Adm ...

  9. oo第一次作业

    前言: 这是一篇面向对象作业总结,作业内容是对多项式进行求导,一共有三个阶段,具体要求不详述,第一阶段只要求’+’连接coeff*x^pow的形式,第二次支持*连接的幂函数及三角函数,第三次则需要支持 ...

  10. visualization of filters keras 基于Keras的卷积神经网络(CNN)可视化

    https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/detail ...