参考:Add P-values and Significance Levels toggplots

ggpubr的包比较局限,能用的test也比较局限,但是做起来快速简单。

当情况特殊时ggpubr就不能用了,可以自己做了显著性test之后再显示在图上。

# show lable in facet grid plot
dat_text <- data.frame()
for (i in names(paired_list)) {
# Compute t-test
res <- t.test(value ~ group, data = paired_list[[i]], paired = TRUE)
dat_text <- rbind(dat_text, data.frame(variable=i, pvalue=res$p.value))
} dat_text$label <- paste("P", round(dat_text$pvalue, 3), sep="=") dat_text[dat_text$pvalue<0.05 & dat_text$pvalue>0.01,]$label <- paste("*",
dat_text[dat_text$pvalue<0.05 & dat_text$pvalue>0.01,]$label, sep=" ") dat_text[dat_text$pvalue<0.01,]$label <- paste("**", "P<0.01", sep=" ") library(ggplot2)
options(repr.plot.width=8, repr.plot.height=12) # 8x8
g2 <- ggplot(data=genes_expr_melt, aes(x=pseudotime, y=value, fill=group, color=group)) +
geom_point(size=0.01, alpha=0.5, aes(color=group, fill=group)) +
labs(x = "Pseudotime", y = "Relative expression", title = "Neuronal lineage") +
geom_smooth(method = 'loess',se=F,size=0.15,span = 0.7) + # ,alpha=0.05, weight=0.1,
facet_wrap( ~ variable, ncol=3, labeller = label_context, scales = "free_y") + #
geom_text(size = 5, data = dat_text, mapping = aes(x = Inf, y = Inf, label = label),
hjust = 1.05,vjust = 1.5, color=ifelse(dat_text$pvalue < 0.05,'red','black')) +
# themes
theme(strip.background = element_blank(),
panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.spacing=unit(.4, "lines"),panel.border = element_rect(color = "black", fill = NA, size = 0.5))+
theme(axis.text.x = element_text(face="plain", angle=0, size = 10, color = "black", vjust=0.5),
axis.text.y = element_text(face="plain", size = 10, color = "black"),
axis.title =element_text(size = 15)) +
theme(strip.background = element_rect(fill = "gray90", color = NA))+
# theme(legend.position = "none") + # must remove legend
theme(strip.placement = "outside", strip.text.x = element_text(face="plain", size = 13),
strip.text.y = element_text(face="plain", size = 11)) +
theme(strip.text.x = element_text(margin = margin(1,0,1,0, "mm"))) +
scale_color_manual(values=c("deepskyblue","red","gray50")) +
scale_fill_manual(values=c("deepskyblue","red","gray50"))
plot(g2)
# }

多组比较,挑选感兴趣的显示显著性。

data("ToothGrowth")
head(ToothGrowth)  
library(ggpubr)
my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
options(repr.plot.width=4, repr.plot.height=4)
ggplot(ToothGrowth, aes(x=as.character(dose), y=len, fill=dose)) +
geom_boxplot(outlier.size=NA, size=0.01, outlier.shape = NA) +
geom_jitter(width = 0.3, size=0.01) +# , aes(color=supp) +
stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
stat_compare_means(label.y = 50, label.x = 1.5) # Add global p-value

还可以设定一个ref group来显示显著性差异,只需要改一下设定。

  stat_compare_means(method = "anova", label.y = 1.3, label.x = 3)+ # Add pairwise comparisons p-value
# # Add global p-value
stat_compare_means(label = "p.signif", method = "t.test", ref.group = "hNP-D20", label.y = 1.1) +

  

生物学的强烈推荐看看Y叔的公众号里的统计相关的文章,非常的基础和实用。

统计

代码例子:

options(repr.plot.width=7, repr.plot.height=6)
# facet boxplot
bp <- ggplot(expr_data2, aes(x=group, y=expression, fill=NA)) +
geom_boxplot(outlier.size=NA, size=0.01, outlier.shape = NA) +
geom_jitter(width = 0.3, size=0.01, aes(color=cluster)) +
# + geom_boxplot( +
facet_grid( cluster ~ gene, switch="y") + # , scales = "free"
theme_bw() +
stat_compare_means(aes(group = group, label = ..p.signif..), label.x = 1.3,label.y = 1.3,
method = "wilcox.test", hide.ns = T) + # label = "p.format",
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
labs(x = "", y = "", title = "") +
theme(panel.spacing=unit(.3, "lines"),panel.border = element_rect(color = "black", fill = NA, size = 0.2)) +
theme(axis.ticks.x = element_blank(), axis.ticks = element_line(size = 0.1),
axis.text.x = element_text(face="plain", angle=90, size = 8, color = "black", vjust=0.5),
axis.text.y = element_text(face="plain", size = 4, color = "black"),
axis.title =element_text(size = 12)) +
theme(strip.background = element_rect(fill = "gray97", color = NA))+
theme(legend.position = "none") +
theme(strip.placement = "outside", strip.text.x = element_text(face="italic", size = 11),
strip.text.y = element_text(face="plain", size = 11)) +
scale_y_continuous(position="right", limits = c(-0.5,1.5)) +
scale_fill_manual(values=brewer.pal(8,"Set2")[c(2,3,7,1,5,6)]) +
scale_color_manual(values=brewer.pal(8,"Set2")[c(2,3,7,1,5,6)])
bp

  

ggplot的boxplot添加显著性 | Add P-values and Significance Levels to ggplots | 方差分析的更多相关文章

  1. thinkphp添加数据 add()方法

    thinkphpz内置的add()方法用于向数据库表添加数据,相当于SQL中的INSERT INTO 行为添加数据 add 方法是 CURD(Create,Update,Read,Delete / 创 ...

  2. [Swift]LeetCode921.使括号有效的最少添加 | Minimum Add to Make Parentheses Valid

    Given a string S of '(' and ')' parentheses, we add the minimum number of parentheses ( '(' or ')', ...

  3. menu-代码添加以及add方法参数意义

    今天需要给一个menu动态添加一个item,先把方法记录如下 @Override public boolean onCreateOptionsMenu(Menu menu) { menu.add(Me ...

  4. LeetCode 921. 使括号有效的最少添加(Minimum Add to Make Parentheses Valid) 48

    921. 使括号有效的最少添加 921. Minimum Add to Make Parentheses Valid 题目描述 给定一个由 '(' 和 ')' 括号组成的字符串 S,我们需要添加最少的 ...

  5. [deviceone开发]-动态添加组件add方法的示例

    一.简介 这个示例详细介绍ALayout的add方法的使用(原理也适用于Linearlayout),以及add上去的新ui和已有的ui如何数据交换,初学者推荐.二.效果图 三.相关下载 https:/ ...

  6. 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

    在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...

  7. magento产品成功添加到购物车后跳转到不同页面 添加 add to cart 按钮

    1 添加产品到购物车成功后是跳转到购物车页面或不跳转.这个在后台可以设置 system -> configuration -> After Adding a Product Redirec ...

  8. 从零开始编写自己的C#框架(22)——添加普通列表页面

    普通列表页面指的是上一章那种有层次感列表以外的正常列表页面,由于上一章已讲解了正常添加页面的相关操作了,所以部分相关的操作本章节就不再罗嗦重复一次了.大家可以试试先用本章内容中的一些简单介绍,自己使用 ...

  9. 下拉刷新列表添加SwipeDismissListViewTouchListener实现滑动删除某一列。

    <Android SwipeToDismiss:左右滑动删除ListView条目Item> Android的SwipeToDismiss是github上一个第三方开源框架(github上的 ...

随机推荐

  1. vue+element-ui实现表格checkbox单选

    公司平台利用vue+elementui搭建前端页面,因为本人第一次使用vue也遇到了不少坑,因为我要实现的效果如下图所示 实现这种单选框,只能选择一个,但element-ui展示的是多选框,check ...

  2. Hadoop集群故障诊断

    集群故障诊断通行方法:1.cloudera manager 监控和管理软件本身出问题了(没有任何数据),集群还是好的,业务还在正常跑:2.监控软件是好的,从监控里发现了很多问题,如CPU飙高.内存飙高 ...

  3. nginx如何调用php

    nginx如何调用php 采用nginx+php作为webserver的架构模式,在现如今运用相当广泛.然而第一步需要实现的是如何让nginx正确的调用php.由于nginx调用php并不是如同调用一 ...

  4. How to emulate a Raspberry Pi on your PC

    How to emulate a Raspberry Pi on your PC I am very interested in trying simulators and emulators for ...

  5. hdu1693 插头dp

    题意:给了一个矩阵图,要求使用回路把图中的树全部吃掉的方案树,没有树的点不能走,吃完了这个点也就没有了,走到哪吃到哪 用插头dp搞 #include <iostream> #include ...

  6. 莫名奇妙虚拟机 ip addr 不显示 ip 地址,连不上网络

    CentOS7 Failed to start LSB: Bring up/down networking. 说是mac地址不对.其实,本人并没有配置mac,按理说用的默认的.之前一直是可以正常工作的 ...

  7. FileFilter过滤器

    FileFilter过滤器原理: File对象的listFiles()方法做了三件事情: 第一件,遍历得到所有的文件/文件夹: 第二件,调用入参过滤器接口自己DIY的实现类中重写的accept()方法 ...

  8. 基于JAX-WS的webService开发实例

    最近因为工作原因接触到webService,所以记录下开发中碰到的问题,方便自己以后复习,顺便发扬一下开源精神.刚刚接触webServie如果有什么错误欢迎大家指正. 本地环境:myEclipse10 ...

  9. uploadify上传图片的使用

    一:引用jquery.uploadify.js 二:代码 <body> <table> <tr> <td style="width: 15%; te ...

  10. Java8过滤器(Filter)

    1.在Java之前对List进行过滤的方式 public class BeforeJava8 { public static void main(String[] args) { List<Pe ...