North American Invitational Programming Contest 2018
A. Cut it Out!
枚举第一刀,那么之后每切一刀都会将原问题划分成两个子问题。
考虑DP,设$f[l][r]$表示$l$点顺时针一直到$r$点还未切割的最小代价,预处理出每条边的代价转移即可。
时间复杂度$O(n^3)$。
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=422;
const double eps=1e-8;
const double inf=1e100;
inline int sgn(double x){
if(x>eps)return 1;
if(x<-eps)return -1;
return 0;
}
inline void up(double&a,double b){if(a>b)a=b;}
int n,m,i,j,k;
double ans=inf,f[N][N];
bool v[N][N];
struct P{
double x,y;
P(){}
P(double _x,double _y){x=_x,y=_y;}
P operator-(const P&b)const{return P(x-b.x,y-b.y);}
P operator+(const P&b)const{return P(x+b.x,y+b.y);}
P operator*(const double&b)const{return P(x*b,y*b);}
double len(){return hypot(x,y);}
double len2(){return x*x+y*y;}
void read(){scanf("%lf%lf",&x,&y);}
}a[N],b[N];
double wl[N],wr[N];
inline double cross(const P&a,const P&b){return a.x*b.y-a.y*b.x;}
inline double line_intersection(const P&a,const P&b,const P&p,const P&q){
double U=cross(p-a,q-p),D=cross(b-a,q-p);
return U/D;
//return a+(b-a)*(U/D);
}
inline void pre(double&A,double&B,int k){
A=-inf,B=inf;
for(int i=0;i<n;i++){
double now=line_intersection(b[k],b[k+1],a[i],a[i+1]);
if(now<0.5&&now>A)A=now;
if(now>0.5&&now<B)B=now;
}
}
inline double cal(int k,int L,int R){
k%=m;
k+=m;
k%=m;
if(L>-100){
L%=m;
L+=m;
L%=m;
}
if(R>-100){
R%=m;
R+=m;
R%=m;
}
double A=wl[k],B=wr[k];
if(L>=0){
double now=line_intersection(b[k],b[k+1],b[L],b[L+1]);
//printf("L=%d %.10f\n",L,now);
if(now<0.5&&now>A)A=now;
if(now>0.5&&now<B)B=now;
}
if(R>=0){
double now=line_intersection(b[k],b[k+1],b[R],b[R+1]);
//printf("R=%d %.10f\n",R,now);
if(now<0.5&&now>A)A=now;
if(now>0.5&&now<B)B=now;
}
//printf("! %.10f\n",(B-A)*((b[k]-b[k+1]).len()));
return (B-A-1)*((b[k]-b[k+1]).len());
}
double dfs(int l,int r){//point a[l] -> a[r] are not cut
if(l>=r)return 0;
if(v[l][r])return f[l][r];
double ret=inf;
for(int i=l;i<r;i++){
//printf("i=%d cal=%.10f\n",i,cal(i,l-1,r));
up(ret,dfs(l,i)+dfs(i+1,r)+cal(i,l-1,r));
}
v[l][r]=1;
//printf("f[%d][%d]=%.10f\n",l,r,f[l][r]);
return f[l][r]=ret;
}
int main(){
scanf("%d",&n);
for(i=0;i<n;i++)a[i].read();
a[n]=a[0];
scanf("%d",&m);
for(i=0;i<m;i++)b[i].read();
b[m]=b[0];
//cal(6,5,8);
//dfs(6,8);
for(i=0;i<m;i++)pre(wl[i],wr[i],i);
for(i=0;i<m;i++)up(ans,dfs(i+1,i+m)+cal(i,-100,-100));
for(i=0;i<m;i++)ans+=(b[i]-b[i+1]).len();
printf("%.15f",ans);
}
/*
4
-100 -100
-100 100
100 100
100 -100
8
-1 -2
-2 -1
-2 1
-1 2
1 2
2 1
2 -1
1 -2
*/
B. Double Clique
一个方案合法当且仅当团点数$\times ($团点数$-1)+$独立集度数和$=$团度数和,且存在可行方案满足团是度数最大的若干个点。
找到可行方案后,要么是团里出去一个点,要么是独立集里出去一个点,要么两边各出去一个点。
时间复杂度$O(n\log n)$。
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=200010;
int n,m,i,j,x,y,d[N],s[N];ll ans;
int main(){
scanf("%d%d",&n,&m);
while(m--)scanf("%d%d",&x,&y),d[x]++,d[y]++;
sort(d+1,d+n+1);
reverse(d+1,d+n+1);
for(i=1;i<=n;i++)s[i]=s[i-1]+d[i];
for(i=0;i<=n;i++)if(1LL*i*(i-1)+s[n]-s[i]==s[i]){ans=1;break;}
if(!ans)return puts("0"),0;
for(j=1;j<=i;j++)if(1LL*(i-1)*(i-2)+s[n]-s[i]+d[j]==s[i]-d[j])ans++;
for(j=i+1;j<=n;j++)if(1LL*(i+1)*i+s[n]-s[i]-d[j]==s[i]+d[j])ans++;
for(x=0,j=1;j<=i;j++)if(d[j]==d[i])x++;
for(y=0,j=i+1;j<=n;j++)if(d[j]==d[i])y++;
ans+=1LL*x*y;
printf("%lld",ans%1000000007);
}
C. Flashing Fluorescents
注意到答案不超过$n$,枚举答案$ans$,则任何一个可行方案可以由若干个长度互不相等且不超过$ans$的区间异或得到。
设$f[ans][S]$表示长度不超过$ans$能否异或出$S$,枚举当前长度的区间位置转移即可。
时间复杂度$O(2^nn^2)$。
#include<cstdio>
#include<cstring>
int n,i,j,now,S;
bool f[50][1<<16];
char a[50];
int main(){
scanf("%s",a);
n=strlen(a);
for(i=0;i<n;i++)if(a[i]=='0')S^=1<<i;
f[0][S]=1;
while(!f[now][0]){
for(S=0;S<1<<n;S++)f[now+1][S]=f[now][S];
for(i=0;i<n;i++){
int mask=0;
for(j=0;j<now+1&&i+j<n;j++)mask|=1<<(i+j);
for(S=0;S<1<<n;S++)if(f[now][S])f[now+1][S^mask]=1;
}
now++;
}
printf("%d",now);
}
D. Missing Gnomes
按题意模拟。
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n, m;
int a[N], ans[N];
bool use[N];
int main()
{
while(~scanf("%d%d", &n, &m))
{
for(int i = 1; i <= n; ++i)use[i] = 0; for(int i = 1; i <= m; ++i)
{
scanf("%d", &a[i]);
use[a[i]] = 1;
} int x = 1;
int g = 0;
for(int i = 1; i <= m; ++i)
{
while(x < a[i])
{
if(!use[x])ans[++g] = x;
++x;
}
ans[++g] = a[i];
}
while(x <= n)
{
if(!use[x])ans[++g] = x;
++x;
}
for(int i = 1; i <= n; ++i)printf("%d\n", ans[i]);
}
return 0;
} /*
【trick&&吐槽】 【题意】 【分析】 【时间复杂度&&优化】 */
E. Prefix Free Code
建立Trie将字符串映射为数字,从前往后枚举LCP,那么这一位能填的数要小于某个值,且前面没出现过,可以用树状数组加速统计,后面能填的数可以用组合数计算。
时间复杂度$O(n\log n)$。
#include<cstdio>
#include<cstring>
const int N=1000010,P=1000000007;
int n,m,len,i,j,x,son[N][26],v[N],tot,dfn,a[N],cnt;
int bit[N],fac[N],inv[N],ans;
char s[N];
void dfs(int x){
if(v[x])v[x]=++dfn;
for(int i=0;i<26;i++)if(son[x][i])dfs(son[x][i]);
}
inline void ins(int x,int p){for(;x<=n;x+=x&-x)bit[x]+=p;}
inline int ask(int x){int t=0;for(;x;x-=x&-x)t+=bit[x];return t;}
inline int A(int n,int m){return n<m?0:1LL*fac[n]*inv[n-m]%P;}
int main(){
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%s",s);
len=strlen(s);
for(x=j=0;j<len;j++){
if(!son[x][s[j]-'a'])son[x][s[j]-'a']=++tot;
x=son[x][s[j]-'a'];
}
v[x]=1;
}
dfs(0);
for(fac[0]=i=1;i<=n;i++)fac[i]=1LL*fac[i-1]*i%P;
for(inv[0]=inv[1]=1,i=2;i<=n;i++)inv[i]=1LL*(P-inv[P%i])*(P/i)%P;
for(i=2;i<=n;i++)inv[i]=1LL*inv[i-1]*inv[i]%P;
scanf("%s",s);
for(x=i=0;s[i];i++){
x=son[x][s[i]-'a'];
if(v[x])a[++cnt]=v[x],x=0;
}
ans=1;
for(i=1;i<=n;i++)ins(i,1);
for(i=1;i<=cnt;i++){
ins(a[i],-1);
ans=(1LL*A(n-i,m-i)*ask(a[i])+ans)%P;
}
printf("%d",ans);
}
F. Probe Droids
即求斜率第$k$小的坐标,首先特判掉斜率$=0$或者斜率不存在的情况。
在Stern-Brocot Tree上枚举互质数对作为斜率,然后用类欧几里得算法在$O(\log n)$的时间内统计出直线下方的点数,以此来判断往左走还是往右走。
考虑二分往左往右走的拐点位置,则每次询问的复杂度降低至$O(\log^3n)$。
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<iostream>
using namespace std;
typedef long long ll;
ll ansx,ansy;
ll cal(ll a,ll b,ll c,ll n){
if(!a||n<0)return 0;
ll x,y;
if(a>=c||b>=c){
x=cal(a%c,b%c,c,n);
y=a/c*(n*(n+1)/2)+b/c*(n+1)+x;
return y;
}
ll m=(a*n+b)/c;
x=cal(c,c-b-1,a,m-1);
y=n*m-x;
return y;
}
ll calbelow(ll up,ll down,ll n,ll m){
ll lim=min(n*down/up,m);
return cal(up,0,down,lim)+(m-lim)*n;
}
ll calexact(ll up,ll down,ll n,ll m){
return min(n/up,m/down);
}
int check(ll up,ll down,ll n,ll m,ll k){
if(up>n||down>m)return 2;
ll below=calbelow(up,down,n,m);
ll exact=calexact(up,down,n,m);
//cout<<up<<" "<<down<<" "<<below<<" "<<exact<<endl;
//[below-exact+1,below]
if(k>below)return -1;//too small
if(k<below-exact+1)return 1;//too big
return 0;
}
void solve(ll n,ll m,ll k){
ll lu=0,ld=1,ru=1,rd=0,mu,md;
ll A,B;
while(1){
mu=lu+ru;
md=ld+rd;
int ret=check(mu,md,n,m,k);
if(ret==0){
A=mu,B=md;
break;
}
ll l=1,r=n,fin=0;
if(ret<0){
while(l<=r){
ll mid=(l+r)>>1;
if(check(lu+ru*mid,ld+rd*mid,n,m,k)<0)l=(fin=mid)+1;else r=mid-1;
}
lu+=ru*fin,ld+=rd*fin;
}else{
while(l<=r){
ll mid=(l+r)>>1;
if(check(ru+lu*mid,rd+ld*mid,n,m,k)==1)l=(fin=mid)+1;else r=mid-1;
}
ru+=lu*fin,rd+=ld*fin;
}
}
ll below=calbelow(A,B,n,m);
ll exact=calexact(A,B,n,m);
below=below-exact;
k-=below;
ansx=B*k;
ansy=A*k;
//cout<<A<<"/"<<B<<endl;
}
int main(){
ll n,m,q,k;
cin>>n>>m>>q;
while(q--){
cin>>k;
if(k<m){
cout<<"1 "<<k+1<<endl;
continue;
}
if(k>n*m-n){
cout<<k-(n*m-n)+1<<" 1"<<endl;
continue;
}
solve(n-1,m-1,k-(m-1));
cout<<ansy+1<<" "<<ansx+1<<endl;
}
}
G. Rainbow Graph
若只有一个限制,满足拟阵。
对于两个限制,则是两个拟阵的交。
首先特判全部都无解的情况,并将全集$E$作为$k=m$的解。
设$M_1$为限制$1$的拟阵,一个方案合法当且仅当在限制$1$下连通,同理定义$M_2$为限制$2$的拟阵。
建立有向图,原图每条边作为一个点,并添加源汇$S$和$T$。
对于上一个$k$的一组最优解$E$中的某条边$x$,如果去掉它后仍然满足$M_1$,则由$S$向$x$连边;若去掉它后仍然满足$M_2$,则由$x$向$T$连边。
对于$E$中某条边$x$和不在$E$中的某条边$y$,若将$x$换成$y$后满足$M_2$,则由$x$向$y$连边;若满足$M_1$,则由$y$向$x$连边。
用SPFA求出$S$到$T$的最短路,就能得到边数恰好减少$1$的最优解。
时间复杂度$O(n^4)$。
#include<cstdio>
const int N=105,M=100000,inf=~0U>>1;
int n,m,i,S,T,x,y,g[N],v[N<<1],nxt[N<<1],ed,vis[N];
int cost[N],col[N],use[N],ans,fin[N];char ch[9];
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
void dfs(int x,char ban){
if(vis[x])return;
vis[x]=1;
for(int i=g[x];i;i=nxt[i])if(use[i>>1]&&col[i>>1]!=ban)dfs(v[i],ban);
}
inline bool check(char ban){
int i;
for(i=1;i<=n;i++)vis[i]=0;
dfs(1,ban);
for(i=1;i<=n;i++)if(!vis[i])return 0;
return 1;
}
namespace Matroid{
int g[N],v[M],nxt[M],ed,q[M],h,t,d[N],pre[N],w[N];bool in[N];
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void ext(int x,int y,int z){
if(d[x]<=y)return;
d[x]=y;
pre[x]=z;
if(in[x])return;
q[++t]=x;
in[x]=1;
}
inline bool find(){
int i,j;
S=m+1,T=m+2;
for(ed=0,i=1;i<=T;i++)g[i]=0;
for(i=1;i<=m;i++)if(use[i]){
w[i]=-cost[i];
use[i]^=1;
if(check('R'))add(S,i);
if(check('B'))add(i,T);
use[i]^=1;
}else w[i]=cost[i];
for(i=1;i<=m;i++)if(use[i])for(j=1;j<=m;j++)if(!use[j]){
use[i]^=1,use[j]^=1;
if(check('B'))add(i,j);
if(check('R'))add(j,i);
use[i]^=1,use[j]^=1;
}
for(i=1;i<=T;i++)d[i]=inf,in[i]=0;
q[h=t=1]=S;
d[S]=0,in[S]=1;
while(h<=t){
x=q[h++];
//printf("! %d %d %d\n",x,d[x],pre[x]);
for(i=g[x];i;i=nxt[i])ext(v[i],d[x]+w[v[i]],x);
in[x]=0;
}
if(d[T]==inf)return 0;
ans+=d[T];
while(pre[T]!=S)use[T=pre[T]]^=1;
return 1;
}
}
int main(){
scanf("%d%d",&n,&m);
for(ed=i=1;i<=m;i++){
scanf("%d%d%d%s",&x,&y,&cost[i],ch);
col[i]=ch[0];
add(x,y),add(y,x);
use[i]=1;
ans+=cost[i];
}
if(!check('R')||!check('B')){
for(i=1;i<=m;i++)puts("-1");
return 0;
}
fin[m]=ans;
for(i=m-1;i;i--)if(Matroid::find())fin[i]=ans;
else{
for(x=1;x<=i;x++)fin[x]=-1;
break;
}
for(i=1;i<=m;i++)printf("%d\n",fin[i]);
}
H. Recovery
将所有位置都设成$1$,然后贪心配对行列使得满足条件。
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n, m;
char a[55], b[55];
int aa[55], bb[55];
int ga, gb;
char s[55][55];
int va[55], vb[55];
bool rand(char a[])
{
int n = random() % 4 + 1;
for(int i = 0; i < n; ++i)a[i] = rand() % 2 + '0';
a[n] = 0;
return 1;
} char tt[55][55];
char t[55][55];
bool FLAG;
void BF()
{
FLAG = 0;
int w = n * m;
int top = 1 << w;;
int ansone = -1;
for(int i = 0; i < top; ++i)
{
for(int j = 0; j < w; ++j)
{
tt[n - 1 - j / m][m - 1 - j % m] = '0' + (i >> j & 1);
}
MS(va, 0);
MS(vb, 0);
int one = 0;
for(int j = 0; j < n; ++j)
{
for(int k = 0; k < m; ++k)
{
va[j] += tt[j][k] % 2;
vb[k] += tt[j][k] % 2;
one += tt[j][k] % 2;
}
}
bool flag = 1;
for(int j = 0; j < n; ++j)if(va[j] % 2 != a[j] % 2)
{
flag = 0;
break;
}
for(int j = 0; j < m; ++j)if(vb[j] % 2 != b[j] % 2)
{
flag = 0;
break;
}
if(flag)
{
FLAG = 1;
if(one > ansone)
{
ansone = one;
memcpy(t, tt, sizeof(tt));
}
}
}
} int main()
{
while(~scanf("%s%s", a, b))
//while(rand(a), rand(b))
{
n = strlen(a);
m = strlen(b);
//puts("input"); puts(a); puts(b); MS(s, 0);
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < m; ++j)
{
s[i][j] = '1';
}
}
ga = gb = 0;
for(int i = 0; i < n; ++i)
{
if(m % 2 != a[i] % 2)
{
aa[++ga] = i;
}
}
for(int i = 0; i < m; ++i)
{
if(n % 2 != b[i] % 2)
{
bb[++gb] = i;
}
} //BF();
if(ga + gb & 1)
{
puts("-1");
/*
if(FLAG)
{
puts("NO flag");
while(1);
}
*/
}
else
{
/*
if(!FLAG)
{
puts("NO !flag");
while(1);
}
*/ //printf("ga|gb = %d %d\n", ga, gb); while(ga < gb)aa[++ga] = 0;
while(gb < ga)bb[++gb] = 0;
int g = ga; /*
int g = min(ga, gb);
for(int i = g + 1; i <= ga; ++i)
{
bb[++gb] = 0;
}
for(int i = g + 1; i <= gb; ++i)
{
aa[++ga] = 0;
}
*/ sort(aa + 1, aa + ga + 1);
sort(bb + 1, bb + gb + 1);
/*printf("ga|gb = %d %d\n", ga, gb);
for(int i = 1; i <= ga; ++i)printf("%d ", aa[i]); puts("");
for(int i = 1; i <= gb; ++i)printf("%d ", bb[i]); puts("");
*/
g = max(ga, gb); for(int i = 1; i <= g; ++i)
{
s[aa[i]][bb[i]] = '0';
} for(int i = 0; i < n; ++i)puts(s[i]); /*
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < m; ++j)
{
if(s[i][j] != t[i][j])
{
puts("s[i][j] != t[i][j]"); for(int i = 0; i < n; ++i)puts(s[i]);
for(int i = 0; i < n; ++i)puts(t[i]);
while(1);
}
}
}
*/ /*
MS(va, 0);
MS(vb, 0);
for(int i = 0; i < n; ++i)
{
for(int j = 0; j < m; ++j)
{
va[i] += s[i][j] % 2;
vb[j] += s[i][j] % 2;
}
}
for(int i = 0; i < n; ++i)
{
if(va[i] % 2 != a[i] % 2)
{
puts("NO A");
while(1);
}
}
for(int i = 0; i < m; ++i)
{
if(vb[i] % 2 != b[i] % 2)
{
puts("NO B");
while(1);
}
}
*/
}
}
return 0;
} /*
【trick&&吐槽】 【题意】 【分析】 【时间复杂度&&优化】 */
I. Red Black Tree
设$f[i][j]$表示考虑$i$的子树,里面选了$j$个红点的方案数,转移时只枚举有效的$j$即可得到$O(nm)$的时间复杂度。
#include<cstdio>
const int N=200010,M=1005,P=1000000007;
int n,m,i,x,g[N],nxt[N],size[N],vip[N];
int f[N][M],h[M];
void dfs(int x){
size[x]=vip[x];
//case 1 not choose x
f[x][0]=1;
for(int y=g[x];y;y=nxt[y]){
dfs(y);
for(int j=0;j<=size[x]+size[y]&&j<=m;j++)h[j]=0;
for(int j=0;j<=size[y]&&j<=m;j++)for(int k=0;k<=size[x]&&j+k<=m;k++)
h[j+k]=(1LL*f[y][j]*f[x][k]+h[j+k])%P;
size[x]+=size[y];
for(int j=0;j<=size[x]+size[y]&&j<=m;j++)f[x][j]=h[j];
}
//case 2 choose x
f[x][vip[x]]=(f[x][vip[x]]+1)%P;
}
int main(){
scanf("%d%d",&n,&m);
for(i=2;i<=n;i++){
scanf("%d",&x);
nxt[i]=g[x];g[x]=i;
}
for(i=1;i<=m;i++)scanf("%d",&x),vip[x]=1;
dfs(1);
for(i=0;i<=m;i++)printf("%d\n",f[1][i]);
}
J. Winter Festival
因为所有简单环边权和都要是奇数,因此当两个简单环有公共边时不可能满足条件,所以当且仅当图是仙人掌的时候才有解。
设$f[i][j][x][y]$表示考虑DFS生成树中$i$的子树,$i$与$i$父亲的边的边权为$j$,$i$与$i$父亲的边所在环的边权和模$2$为$x$,$i$与$i$父亲的边所在环的非树边边权为$y$的最小代价。
转移时需要通过另一个辅助数组$h[S][j][x][y]$来进行不同子树的合并,其中$j,x,y$含义与$f$相同,而$S$表示$x$点周围存在的边权集合。
时间复杂度$O(n+m)$。
#include<cstdio>
#include<cstdlib>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
const int N=100010,inf=100000000;
int n,m,i,x,y,g[N],v[N<<1],nxt[N<<1],ed;
int mark[N],fa[N],vis[N],dfn;
int f[N][3][2][3];
int dp[1<<3][2][3],h[1<<3][2][3];
int istop[N],isbot[N];
int ban[3][1<<3];
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void up(int&a,int b){a>b?(a=b):0;}
inline void clr(){
rep(S,8)rep(j,2)rep(k,3)h[S][j][k]=inf;
}
inline void go(){
rep(S,8)rep(j,2)rep(k,3)dp[S][j][k]=h[S][j][k];
}
void dfs(int x,int y){
fa[x]=y;
vis[x]=++dfn;
for(int i=g[x];i;i=nxt[i]){
int u=v[i];
if(u==y)continue;
if(!vis[u]){
dfs(u,x);
}else if(vis[u]<vis[x]){
int j=x;
isbot[x]=1;
while(j!=u){
mark[j]++;
if(mark[j]>1){
puts("-1");
exit(0);
}
if(fa[j]==u)istop[j]=1;
j=fa[j];
}
}
}
rep(S,8)rep(j,2)rep(k,3)dp[S][j][k]=inf;
if(!y)dp[0][0][0]=0;
else{
//add the cycle edge
if(isbot[x])rep(c,3)up(dp[1<<c][c&1][c],c);
else dp[0][0][0]=0;
}
for(int i=g[x];i;i=nxt[i]){
int u=v[i];
if(u==y)continue;
if(fa[u]==x){
clr();
if(istop[u]){
rep(S,8)rep(j,2)rep(k,3)if(dp[S][j][k]<inf)
rep(A,3)if(!ban[A][S])rep(B,2)rep(C,3)if(f[u][A][B][C]<inf){
if(B!=1)continue;
if(ban[C][S])continue;
if((A+C)%3==1)continue;
up(h[S|(1<<A)|(1<<C)][j][k],dp[S][j][k]+f[u][A][B][C]);
}
}else if(mark[u]){
rep(S,8)rep(j,2)rep(k,3)if(dp[S][j][k]<inf)
rep(A,3)if(!ban[A][S])rep(B,2)rep(C,3)if(f[u][A][B][C]<inf){
up(h[S|(1<<A)][(j+B)&1][C],dp[S][j][k]+f[u][A][B][C]);
}
}else{
rep(S,8)rep(j,2)rep(k,3)if(dp[S][j][k]<inf)
rep(A,3)if(!ban[A][S])rep(B,1)rep(C,1)if(f[u][A][B][C]<inf){
up(h[S|(1<<A)][j][k],dp[S][j][k]+f[u][A][B][C]);
}
}
go();
}
}
rep(S,3)rep(j,2)rep(k,3)f[x][S][j][k]=inf;
if(y){
//add the father edge
if(mark[x]){
rep(S,8)rep(j,2)rep(k,3)if(dp[S][j][k]<inf)
rep(c,3)if(!ban[c][S])up(f[x][c][(j+c)&1][k],dp[S][j][k]+c);
}else{
rep(S,8)rep(j,2)rep(k,3)if(dp[S][j][k]<inf)
rep(c,3)if(!ban[c][S])up(f[x][c][j][k],dp[S][j][k]+c);
}
}else{
rep(S,8)rep(j,2)rep(k,3)if(dp[S][j][k]<inf)
up(f[x][0][0][0],dp[S][j][k]);
}
}
int main(){
rep(i,3)rep(j,8)rep(k,3)if((j>>k&1)&&(i+k)%3==1)ban[i][j]=1;
scanf("%d%d",&n,&m);
for(ed=i=1;i<=m;i++){
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
int ans=0;
for(i=1;i<=n;i++)if(!vis[i]){
dfs(i,0);
if(f[i][0][0][0]>=inf){
puts("-1");
exit(0);
}
ans+=f[i][0][0][0];
}
printf("%d",ans);
}
K. Zoning Houses
若不删除任何点,则答案为区间$x$坐标的极差与$y$坐标极差的较大值。
若删除一个点,则最优方案下一定是删除$x$或者$y$坐标最小或者最大的$4$个点之一,线段树维护即可。
时间复杂度$O(n\log n)$。
#include<cstdio>
#include<algorithm>
using namespace std;
typedef pair<int,int>P;
const int N=100010,M=262150,inf=1000000010;
int n,m,i,x,y,ans;
P xmi[M],xma[M],ymi[M],yma[M];
void build(int x,int a,int b){
if(a==b){
scanf("%d%d",&xmi[x].first,&ymi[x].first);
xmi[x].second=ymi[x].second=a;
xma[x]=xmi[x];
yma[x]=ymi[x];
return;
}
int mid=(a+b)>>1;
build(x<<1,a,mid),build(x<<1|1,mid+1,b);
xmi[x]=min(xmi[x<<1],xmi[x<<1|1]);
xma[x]=max(xma[x<<1],xma[x<<1|1]);
ymi[x]=min(ymi[x<<1],ymi[x<<1|1]);
yma[x]=max(yma[x<<1],yma[x<<1|1]);
}
P askxmi(int x,int a,int b,int c,int d){
if(c>d)return P(inf,0);
if(c<=a&&b<=d)return xmi[x];
int mid=(a+b)>>1;
P t(inf,0);
if(c<=mid)t=askxmi(x<<1,a,mid,c,d);
if(d>mid)t=min(t,askxmi(x<<1|1,mid+1,b,c,d));
return t;
}
P askymi(int x,int a,int b,int c,int d){
if(c>d)return P(inf,0);
if(c<=a&&b<=d)return ymi[x];
int mid=(a+b)>>1;
P t(inf,0);
if(c<=mid)t=askymi(x<<1,a,mid,c,d);
if(d>mid)t=min(t,askymi(x<<1|1,mid+1,b,c,d));
return t;
}
P askxma(int x,int a,int b,int c,int d){
if(c>d)return P(-inf,0);
if(c<=a&&b<=d)return xma[x];
int mid=(a+b)>>1;
P t(-inf,0);
if(c<=mid)t=askxma(x<<1,a,mid,c,d);
if(d>mid)t=max(t,askxma(x<<1|1,mid+1,b,c,d));
return t;
}
P askyma(int x,int a,int b,int c,int d){
if(c>d)return P(-inf,0);
if(c<=a&&b<=d)return yma[x];
int mid=(a+b)>>1;
P t(-inf,0);
if(c<=mid)t=askyma(x<<1,a,mid,c,d);
if(d>mid)t=max(t,askyma(x<<1|1,mid+1,b,c,d));
return t;
}
inline int cal(int x,int y,int z){
return max(
max(askxma(1,1,n,x,z-1).first,askxma(1,1,n,z+1,y).first)-min(askxmi(1,1,n,x,z-1).first,askxmi(1,1,n,z+1,y).first)
,
max(askyma(1,1,n,x,z-1).first,askyma(1,1,n,z+1,y).first)-min(askymi(1,1,n,x,z-1).first,askymi(1,1,n,z+1,y).first)
);
}
int main(){
scanf("%d%d",&n,&m);
build(1,1,n);
while(m--){
scanf("%d%d",&x,&y);
ans=cal(x,y,askxmi(1,1,n,x,y).second);
ans=min(ans,cal(x,y,askxma(1,1,n,x,y).second));
ans=min(ans,cal(x,y,askymi(1,1,n,x,y).second));
ans=min(ans,cal(x,y,askyma(1,1,n,x,y).second));
printf("%d\n",ans);
}
}
North American Invitational Programming Contest 2018的更多相关文章
- The North American Invitational Programming Contest 2018 D. Missing Gnomes
A family of nn gnomes likes to line up for a group picture. Each gnome can be uniquely identified by ...
- The North American Invitational Programming Contest 2018 H. Recovery
Consider an n \times mn×m matrix of ones and zeros. For example, this 4 \times 44×4: \displaystyle \ ...
- The North American Invitational Programming Contest 2018 E. Prefix Free Code
Consider nn initial strings of lower case letters, where no initial string is a prefix of any other ...
- The North American Invitational Programming Contest 2017 题目
NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K A mysterious circular arrangement of black st ...
- North American Invitational Programming Contest (NAIPC) 2017
(待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...
- North American Invitational Programming Contest (NAIPC) 2016
(待补) A. Fancy Antiques 爆搜. B. Alternative Bracket Notation C. Greetings! D. Programming Team 0/1分数规划 ...
- AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)
原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...
- ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018
ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...
- German Collegiate Programming Contest 2018 B. Battle Royale
Battle Royale games are the current trend in video games and Gamers Concealed Punching Circles (GCPC ...
随机推荐
- JS学习笔记Day15
一.ES5及ES6 (一)严格模式 (二)bind/call/apply(改变上下文this指向,都是函数对象的方法) 1.bind:返回值是一个函数 2.call:返回值是一个对象 3.apply: ...
- Linux设备树(三 属性)
三 属性(property) device_type = "memory"就是一个属性,等号前边是属性,后边是值.节点是一个逻辑上相对独立的实体,属性是用来描述节点特性的,根据需要 ...
- elk 中kafka启动脚本和配置文件
kafka启动脚本和配置文件 # more kafka #!/bin/sh # Init script for kafka ### BEGIN INIT INFO # Provides: kafka ...
- 1.3浅谈Spring(IOC容器的实现)
这一节我们来讨论IOC容器到底做了什么. 还是借用之前的那段代码 ClassPathXmlApplicationContext app = new ClassPathXmlApplicationCon ...
- 深入浅出mybatis之返回主键ID
目录 添加单一记录时返回主键ID 在映射器中配置获取记录主键值 获取新添加记录主键字段值 添加批量记录时返回主键ID 获取主键ID实现原理 添加记录后获取主键ID,这是一个很常见的需求,特别是在一次前 ...
- 使用 Google
非原版 Glgoo:http://www.glgoo.com/谷粉搜搜:http://www.gfsoso.net/谷粉搜搜:http://www.gfsswy.com/谷粉搜搜:http://guf ...
- Groovy 设计模式 -- 享元模式
Flyweight Pattern 享元模式, 将对象的相同属性, 以节省内存为目的,存储为一份公共对象, 所有对象共用此分对象. The Flyweight Pattern is a pattern ...
- 网络学习day04_VLSM、子网划分
IP子网划分 首先,在进行子网划分的学习之前,我们先来回顾一下IP地址的相关知识,同时了解一下公有和私有IP地址: 在Internet上有千百万台主机,为了区分这些主机,人们给每台主机都分配了一个专门 ...
- sed追加文本-sed脚本追加文本
input为sed输入文件,内容如下: [root@node1 gitlab-test-]# cat inppu.txt aa bb cc dd 追加文本: 1.匹配 aa 行之后追加文本 We a ...
- 【easy】118.119.杨辉三角
这题必会啊!!! 第一题118. class Solution { public: vector<vector<int>> generate(int numRows) { ve ...