学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵
线性代数,面向连续数学,非离散数学。《The Matrix Cookbook》,Petersen and Pedersen,2006。Shilov(1977)。
标量、向量、矩阵、张量。
标量(scalar)。一个标量,一个单独的数。其他大部分对象是多个数的数组。斜体表示标量。小写变量名称。明确标量数类型。实数标量,令s∊ℝ表示一条线斜率。自然数标量,令n∊ℕ表示元素数目。
向量(vector)。一个向量,一列数。有序排列。次序索引,确定每个单独的数。粗体小写变量名称。向量元素带脚标斜体表示。注明存储在向量中元素类型。如果每个元素都属于R,向量有n个元素,向量属于实数集R的n次笛卡儿乘积构成集合,记ℝⁿ。明确表示向量元素,元素排列成一个方括号包围纵列。向量看作空间中点。每个元素是不同坐标轴上的坐标。索引向量元素,定义包含元素索引集合,集合写在脚标处。用符号-表示集合补集索引。
矩阵(matrix)。一个二维数组。每个元素由两个索引确定。粗体大写变量名称。如果实数矩阵高度为m,宽度为n,A∊ℝ⁽m*n⁾。表示矩阵元素,不加粗斜体形式名称,索引逗号间隔。A1,1表示A左上元素,Am,n表示A右下元素。“:”表示水平坐标,表示垂直坐标i中所有元素。Ai,:表示A中垂直坐标i上一横排元素,A的第i行(row)。右下元素。A:,i表示A的第i列(column)。明确表示矩阵元素,方括号括起数组。矩阵值表达式索引,表达式后接下标,f(A)i,j表示函数f作用在A上输出矩阵第i行第j列元素。
张量(tensor)。超过两维的数组。一个数组中元素分布在若干维坐标规则网络中。A表示张量“A”。张量A中坐标(i,j,k)元素记Ai,j,k。
转置(transpose)。矩阵转置,以对角线为轴镜像。左上角到右下角对角线为主对角线(main diagonal)。A的转置表为A⫟。(A⫟)i,j=Aj,i。向量可作一列矩阵。向量转置,一行矩阵。向量元素作行矩阵写在文本行,用转置操作变标准列向量来定义一个向量,x=[x1,x2,x3]⫟。标量可看作一元矩阵。标量转置等于本身,a=a⫟。
矩阵形状一样,可相加。对应位置元素相加。C=A+B,Ci,j=Ai,j+Bi,j。标量和矩阵相乘或相加,与矩阵每个元素相乘或相加,D=a*B+C,Di,j=a*Bi,j+c。
深度学习,矩阵和向量相加,产生另一矩阵,C=A+b,Ci,j=Ai,j+bj。向量b和矩阵A每一行相加。无须在加法操作前定义一个将向量b复制到第一行而生成的矩阵。隐式复制向量b到很多位置方式,称广播(broadcasting)。
矩阵、向量相乘。
两个矩阵A、B矩阵乘积(matrix product)是第三个矩阵C。矩阵A列数必须和矩阵B行数相等。如果矩阵A的形状m*n,矩阵B的形状是n*p,矩阵C的形状是m*p。两个或多个矩阵并列放置书写矩阵乘法。C=AB。Ci,j=Sumk(Ai,kBk,j)。列乘行。两个矩阵对应元素乘积,元素对应乘积(element-wise product),Hadamard 乘积(Hadamard product),记A⊙B。两个相同维数向量x、y点积(dot product),矩阵乘积x⫟y。矩阵乘积C=AB计算Ci,j步骤看作A第i行和B的第j列间点积。矩阵乘积服务分配律(A(B+C)=AB+AC)、结合律(A(BC)=(AB)C)。不满足交换律(AB=BA)。两个向量点积满足交换律x⫟y=y⫟x。矩阵乘积转置 (AB)⫟=B⫟A⫟。两个向量点积结果是标量,标量转置是自身,x⫟y=(x⫟y)⫟=y⫟x。Ax=b,A∊ℝ⁽m*n⁾是已知矩阵,b∊ℝ⁽m⁾是已知向量,x∊ℝⁿ是求解未知向量。向量x每个元素xi都未知。矩阵A第一行和b中对应元素构成一个约束。
单位矩阵、逆矩阵。
矩阵逆(matrix inversion)。单位矩阵(identity matrix),任意向量和单位矩阵相乘,都不会改变,保持n维向量不变的单位矩阵记In。In∊ℝ⁽n*n⁾。∀x∊ℝⁿ,Inx=x。单位矩阵结构简单,所有沿对角线元素都是1,其他位置所有元素都是0。矩阵A的矩阵逆记A⁽-1⁾,A⁽-1⁾A=In。求解式Ax=b,A⁽-1⁾Ax=A⁽-1⁾b,Inx=A⁽-1⁾b,x=A⁽-1⁾b。当逆矩阵A⁽-1⁾存在,能找到闭解形式。相同逆矩阵可用于多次求解不同向量b方程。逆矩阵A⁽-1⁾在数字计算机上只能表现出有限精度,有效用向量bt算法得到更精确x,逆矩阵A⁽-1⁾主要作理论工具。
参考资料:
《深度学习》
欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi
我有一个微信群,欢迎一起学深度学习。
学习笔记DL004:标量、向量、矩阵、张量,矩阵、向量相乘,单位矩阵、逆矩阵的更多相关文章
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- Stage3D学习笔记(五):通过矩阵操作纹理
虽然我们上一节已经实现了正交矩阵的显示,但是可以明显的感觉到要调整显示纹理的坐标和尺寸是相当复杂的,需要对每个顶点进行操作,如果还要加上注册点和旋转的话,用上一节的方法来做是会让人发疯的! 所以我们距 ...
- Unity3D学习笔记(三十三):矩阵
矩阵 矩阵就是一行和列组织起来的矩形数字块. 矩阵可以理解为是向量的数组. 矩阵的维度和记法 矩阵的维度是包含多少行多少列!例如1行2列的矩阵 记法:矩阵m中,对于第1行第2列的元素,我们记为m1 ...
- Unity3D学习笔记(五):坐标系、向量、3D数学
Unity复习 using System.Collections; using System.Collections.Generic; using UnityEngine; public class ...
- 【STM32学习笔记】STM32f407 使用4*4矩阵键盘
作者:李剀 出处:https://www.cnblogs.com/kevin-nancy/ 欢迎转载,但也请保留上面这段声明.谢谢! 写在前面: 这是本人第一次开始写博客,可能写的不是很好,也请大家谅 ...
- 【学习笔记】整体二分(BZOJ2738矩阵乘法)
也是因为一道题才来学的... 然后就发现这道模板貌似是暑假初期在某校集训的时候的比赛题 并且好像没改= = 前置芝士 1.二分= = * CDQ分治[你要是知道CDQ分治的话这玩意就很好理解啦] *本 ...
- Perl 学习笔记-标量数据
最近学习Perl, 准备看一遍入门指南,关键的东西还是记录下来,以便以后复习和查看参考. 笔记来自<<Perl语言入门第5版>> 1. 在Perl内部,不区分整数值和浮点数值, ...
- TensorFlow学习笔记 补充2—— 生成特殊张量
1. 生成tensor tf.zeros(shape, dtype=tf.float32, name=None) tf.zeros_like(tensor, dtype=None, name=None ...
- NLP︱高级词向量表达(二)——FastText(简述、学习笔记)
FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...
随机推荐
- throw与throws
throws可以单独使用(一直上抛) throw要么和try-catch-finally语句配套使用,要么与throws配套使用 /** * 总结: * 1.throws是方法抛出异常.如: p ...
- optimal-account-balancing
一群朋友去度假,有时互相借钱. 例如,爱丽丝为比尔的午餐支付了 10 美元.后来克里斯给爱丽丝 5 美元搭出租车.我们可以假设每笔交易为一个三元组(X,Y,Z),这意味着第 X 个人借给第 Y 个人 ...
- anytime
#include<stdio.h> #include<stdlib.h> #include<unistd.h> #include<sys/time.h> ...
- 常用的settings.xml文件
<?xml version="1.0"?> <settings> <localRepository>/Users/bernie.cx/.m2/r ...
- 第九周学习笔记-ADO.Net中DataSet的应用
一.知识点描述 1.含义:DataSet是ADO.Net的断开式结构的核心组件,它可以用于多种不同的数据源,用于XML数据,或用于管理应用程序本地的数据.DataSet包含一个或多个DataTable ...
- Codeforces Round #538 (Div. 2) C. Trailing Loves (or L'oeufs?) (分解质因数)
题目:http://codeforces.com/problemset/problem/1114/C 题意:给你n,m,让你求n!换算成m进制的末尾0的个数是多少(1<n<1e18 ...
- Python机器学习(基础篇---监督学习(线性分类器))
监督学习经典模型 机器学习中的监督学习模型的任务重点在于,根据已有的经验知识对未知样本的目标/标记进行预测.根据目标预测变量的类型不同,我们把监督学习任务大体分为分类学习与回归预测两类.监督学习任务的 ...
- 如何制作exe小程序
1.构建maven项目 需要有一个main入口函数 添加M2_HOME及,java_home的环境变量 打开Preference->Java->Installed JREs->Edi ...
- jquery评分插件jquery.raty.js
1.参考链接 官方地址. 教程一 教程二 2.案例1 引入文件: <!-- 评分插件 --> <script type="text/javascript" src ...
- background属性冲突导致的部分浏览器背景图片不显示问题
前几天在项目中遇到了一个让人摸不着头脑的bug,测试说页面显示有点问题并发了截图, 正常的显示状态是这样 首先我自信地用自己的手机检查了一下,没有问题,问清楚后得知是UC浏览器中出现的,UC的内核是u ...