[LeetCode] Max Increase to Keep City Skyline 保持城市天际线的最大增高
In a 2 dimensional array grid
, each value grid[i][j]
represents the height of a building located there. We are allowed to increase the height of any number of buildings, by any amount (the amounts can be different for different buildings). Height 0 is considered to be a building as well.
At the end, the "skyline" when viewed from all four directions of the grid, i.e. top, bottom, left, and right, must be the same as the skyline of the original grid. A city's skyline is the outer contour of the rectangles formed by all the buildings when viewed from a distance. See the following example.
What is the maximum total sum that the height of the buildings can be increased?
Example:
Input: grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]]
Output: 35
Explanation:
The grid is:
[ [3, 0, 8, 4],
[2, 4, 5, 7],
[9, 2, 6, 3],
[0, 3, 1, 0] ] The skyline viewed from top or bottom is: [9, 4, 8, 7]
The skyline viewed from left or right is: [8, 7, 9, 3] The grid after increasing the height of buildings without affecting skylines is: gridNew = [ [8, 4, 8, 7],
[7, 4, 7, 7],
[9, 4, 8, 7],
[3, 3, 3, 3] ]
Notes:
1 < grid.length = grid[0].length <= 50
.- All heights
grid[i][j]
are in the range[0, 100]
. - All buildings in
grid[i][j]
occupy the entire grid cell: that is, they are a1 x 1 x grid[i][j]
rectangular prism.
这道题给了我们一个二维数组,说是数组中的每个数字代表了一栋建筑的高度,那么从四个方向看去,就会有城市的天际线,这个天际线就是由这些建筑的最高的边形成的,现在让我们在不改变天际线的前提下,问最多可以增高建筑的总高度。那么既然不能改变天际线,我们就要清楚天际线是由啥组成的,是最高的建筑物,那么就是说每行或每列的最高那个建筑不能变,而其他建筑物在不超过该行该列中最高建筑的高度情况下是可以有升高空间的。那么思路就该很清晰了,我们首先需要求出各行各列的最大值,成为一个限制高度,然后就遍历每个建筑,每一个建筑的高度都有可能影响该行或者该列的天际线,那么该行该列中的较小值应该是该建筑物的高度极限,如果超过了这个值,那么原来的天际线就会被破坏,所以这个极限值和当前的高度之差就是可以增加的高度,我们累计所有建筑的可增加的高度,就是所求的最大增高,参见代码如下:
class Solution {
public:
int maxIncreaseKeepingSkyline(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[].size(), res = ;
vector<int> row(m, ), col(n, );
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
row[i] = max(row[i], grid[i][j]);
col[j] = max(col[j], grid[i][j]);
}
}
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
res += min(row[i] - grid[i][j], col[j] - grid[i][j]);
}
}
return res;
}
};
参考资料:
https://leetcode.com/problems/max-increase-to-keep-city-skyline/solution/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Max Increase to Keep City Skyline 保持城市天际线的最大增高的更多相关文章
- LeetCode #807. Max Increase to Keep City Skyline 保持城市天际线
https://leetcode-cn.com/problems/max-increase-to-keep-city-skyline/ 执行用时 : 3 ms, 在Max Increase to Ke ...
- Leetcode 807 Max Increase to Keep City Skyline 不变天际线
Max Increase to Keep City Skyline In a 2 dimensional array grid, each value grid[i][j] represents th ...
- LC 807. Max Increase to Keep City Skyline
In a 2 dimensional array grid, each value grid[i][j] represents the height of a building located the ...
- 【LeetCode】807. Max Increase to Keep City Skyline 解题报告(Python &C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- [LeetCode&Python] Problem 807. Max Increase to Keep City Skyline
In a 2 dimensional array grid, each value grid[i][j] represents the height of a building located the ...
- 【Leetcode】807. Max Increase to Keep City Skyline
Description In a 2 dimensional array grid, each value grid[i][j] represents the height of a building ...
- Leetcode 807. Max Increase to Keep City Skyline
class Solution(object): def maxIncreaseKeepingSkyline(self, grid): """ :type grid: Li ...
- [Swift]LeetCode807. 保持城市天际线 | Max Increase to Keep City Skyline
In a 2 dimensional array grid, each value grid[i][j]represents the height of a building located ther ...
- BZOJ1628: [Usaco2007 Demo]City skyline
1628: [Usaco2007 Demo]City skyline Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 256 Solved: 210[Su ...
随机推荐
- 关于设计项目UI界面的软件工具
关于画UI界面的软件,我在网上找了几个,今天式用这几款软件还可以 1.墨刀:国产的,这个专门画APP界面的,用起来比较简单,有免费版的,要注册才能用,提供云存储,收费版的云存储空间会多一些.网站: h ...
- 清除系统默认样式,文本样式,高级选择器(权重),边界圆角,a标签的四大伪类,背景图片
清除系统默认样式 大多系统预定义标签,有默认样式,不满足实际开发需求,反倒影响布局通常清除系统样式,利于开发 body,h1-h6,p,table { margin:; } ul { margin:; ...
- Gram 矩阵与向量到子空间的距离
设 $W$ 是 $n$ 维 Euclidean 空间 $V$ 的子空间, $\beta\in V$, 定义 $\beta$ 到 $W$ 的距离 $$\bex \rd (\beta,W)=|\bet ...
- SpringMVC核心类和注解
springMVC最重要的就是前端控制器DispatchServlet了.他是整个springMVC应用的核心. 需要将它配置在web.xml中. 1.DispatchServlet的配置 <! ...
- 一些Js操作
一.after()和before()方法的区别 after()——其方法是将方法里面的参数添加到jquery对象后面去: 如:A.after(B)的意思是将B放到A后面去: before( ...
- springMVC源码笔记
springMVC 设计总览 下图来源:https://www.cnblogs.com/fangjian0423/p/springMVC-directory-summary.html 下图来源:htt ...
- vs 快捷操作
1. 选中所需行 增加缩进 tab 减少缩进 shift+tab 2.附加调试:ctrl+alt+p: 全部用快捷键操作看起来真的很6
- Qt 图像缩放显示
1. QImage Image; Image.load(":/images/f1.png"); QPixmap pixmap = QPixmap::fromImage(Image) ...
- 我的pwn笔记
0.64位程序参数一次保存在RDI,RSI,RDX,RCX,R8和 R9,具体见图 windows64位调用约定 1.<_libc_csu_init>有一些万能gadget,汇编如下 #! ...
- 51nod--1183 编辑距离(动态规划)
题目: 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指 ...