从10点到12点数据库中对象块变化排名靠前的对象

select to_char(begin_interval_time,'YYYY_MM_DD HH24:MI') snap_time,

dhsso.object_name,

sum(db_block_changes_delta)

from dba_hist_seg_stat dhss,

dba_hist_seg_stat_obj dhsso,

dba_hist_snapshot dhs

where dhs.snap_id = dhss.snap_id

and dhs.instance_number = dhss.instance_number

and dhss.obj# = dhsso.obj#

and dhss.dataobj# = dhsso.dataobj#

and begin_interval_time between

to_date('2018_12_25 10','YYYY_MM_DD HH24') and

to_date('2018_12_25 13','YYYY_MM_DD HH24')

GROUP BY to_char(begin_interval_time,'YYYY_MM_DD HH24:MI'),

dhsso.object_name

order by 3 desc;

ZQF_LYJ_D42_USR这张表最近几个snap间隔的变化量

select to_char(begin_interval_time,'YYYY_MM_DD HH24:MI') snap_time,

sum(db_block_changes_delta)

from dba_hist_seg_stat dhss,

dba_hist_seg_stat_obj dhsso,

dba_hist_snapshot dhs

where dhs.snap_id = dhss.snap_id

and dhs.instance_number = dhss.instance_number

and dhss.obj# = dhsso.obj#

and dhss.dataobj# = dhsso.dataobj#

and dhsso.object_name = 'ZQF_LYJ_D42_USR'

GROUP BY to_char(begin_interval_time,'YYYY_MM_DD HH24:MI');

历史SQL中关于ZQF_LYJ_D42_USR

select to_char(begin_interval_time,'YYYY_MM_DD HH24'),

dbms_lob.substr(sql_text,4000,1),

dhss.instance_number,

dhss.sql_id,

executions_delta,

dhss.rows_processed_delta

from dba_hist_sqlstat dhss,dba_hist_snapshot dhs,dba_hist_sqltext dhst

where upper(dhst.sql_text) like '%ZQF_LYJ_D42_USR%'

and dhss.snap_id = dhs.snap_id

and dhss.instance_number = dhs.instance_number

and begin_interval_time between

to_date('2018_12_25 10','YYYY_MM_DD HH24') and

to_date('2018_12_25 13','YYYY_MM_DD HH24')

and dhss.sql_id=dhst.sql_id;

SQL: How to Find Sessions Generating Lots of Redo or Archive logs (文档 ID 167492.1)

***Checked for relevance on 13-Oct-2015***

goal: How to find sessions generating lots of redo

fact: Oracle Server - Enterprise Edition 8

fact: Oracle Server - Enterprise Edition 9

fact: Oracle Server - Enterprise Edition 10

fix:

To find sessions generating lots of redo, you can use either of the following

methods. Both methods examine the amount of undo generated. When a transaction

generates undo, it will automatically generate redo as well.

The methods are:

1) Query V$SESS_IO. This view contains the column BLOCK_CHANGES which indicates

how much blocks have been changed by the session. High values indicate a

session generating lots of redo.

The query you can use is:

SQL> SELECT s.sid, s.serial#, s.username, s.program,

i.block_changes

FROM v$session s, v$sess_io i

WHERE s.sid = i.sid

ORDER BY 5 desc, 1, 2, 3, 4;

Run the query multiple times and examine the delta between each occurrence

of BLOCK_CHANGES. Large deltas indicate high redo generation by the session.

2) Query V$TRANSACTION. This view contains information about the amount of

undo blocks and undo records accessed by the transaction (as found in the

USED_UBLK and USED_UREC columns).

The query you can use is:

SQL> SELECT s.sid, s.serial#, s.username, s.program,

2  t.used_ublk, t.used_urec

3  FROM v$session s, v$transaction t

4  WHERE s.taddr = t.addr

5  ORDER BY 5 desc, 6 desc, 1, 2, 3, 4;

Run the query multiple times and examine the delta between each occurrence

of USED_UBLK and USED_UREC. Large deltas indicate high redo generation by

the session.

You use the first query when you need to check for programs generating lots of

redo when these programs activate more than one transaction. The latter query

can be used to find out which particular transactions are generating redo.

How To Determine The Cause Of Lots Of Redo Generation Using LogMiner (文档 ID 300395.1)

APPLIES TO:

Oracle Database - Enterprise Edition - Version 8.1.7.4 to 10.2.0.5 [Release 8.1.7 to 10.2]

Oracle Database - Enterprise Edition - Version 11.2.0.1 and later

Information in this document applies to any platform.

GOAL

This article provides guidelines DBAs can use to determine which OPERATION codes are generating lots of redo information.

This article is intended for DBAs. The article assumes the reader is familiar with LogMiner and has basic skills in mining redo logs.

SOLUTION

--- How to determine the cause of lots of redo generation using LogMiner ---

Using OPERATION Codes to Understand Redo Information

There are multiple operation codes which can generate the redo information, using following guide lines you can identify the operation codes which are causing the high redo generation and you need to take an appropriate action on it to reduce the high redo generation.

NOTE:

Redo records are not all equally sized. So remember that just because certain statements show up a lot in the LogMiner output, this does not guarantee that you have found the area of functionality generating the excessive redo.

What are these OPERATION codes ?

INSERT / UPDATE / DELETE -- Operations are performed on SYS objects are also considered as an Internal Operations.

COMMIT -- This is also "Internal" operation, you will get line "commit;" in the column sql_redo.

START -- This is also "Internal" operation, you will get line "set transaction read write;" in sql_redo INTERNAL -- Dictionary updates

SELECT_FOR_UPDATE - This is also an Internal operation and oracle generates the redo information for "select" statements which has "for update" clause.

In general INTERNAL operations are not relevant, so to query the relevant data, use "seg_owner=' in the "where" clause.

Examples :

How to extract relevant information from the view v$logmnr_contents?

1. This SQL lists operations performed by user SCOTT

SQL> select distinct operation,username,seg_owner from v$logmnr_contents where seg_owner='SCOTT';

OPERATION USERNAME SEG_OWNER

-------------------------- ------------------------- ---------------------

DDL SCOTT SCOTT

DELETE SCOTT SCOTT

INSERT SCOTT SCOTT

UPDATE SCOTT SCOTT

2. This SQL lists the undo and redo associated with operations that user SCOTT performed

SQL> select seg_owner,operation,sql_redo,sql_undo from v$logmnr_contents where SEG_owner='SCOTT';

SCOTT DDL

create table LM1 (c1 number, c2 varchar2(10));

SCOTT INSERT

insert into "SCOTT"."LM1"("C1","C2") values ('101','AAAA');

delete from "SCOTT"."LM1" where "C1" = '101' and "C2" = 'AAAA'

and ROWID = 'AAAHfBAABAAAMUqAAA';

SCOTT UPDATE update "SCOTT"."LM1" set "C2" = 'YYY'

where "C2" = 'EEE' and ROWID = 'AAAHfBAABAAAMUqAAE';

update "SCOTT"."LM1" set "C2" = 'EEE' where "C2" = 'YYY'

and ROWID = 'AAAHfBAABAAAMUqAAE';

INSERT / UPDATE / DELETE -- Operations are performed on SYS objects are also considered as an Internal Operations.

3. This SQL lists undo and redo genereated for UPDATE statements issues by user SCOTT

SQL> select username, seg_owner,operation,sql_redo,sql_undo from v$logmnr_contents where operation ='UPDATE' and USERNAME='SCOTT';

UNAME SEG_OW OPERATION SQL_REDO SQL_UNDO

---------- ---------- ------------ -----------------------------------

SCOTT SYS UPDATE update "SYS"."OBJ$" set "OBJ#" = '1'..... update ....

SCOTT SYS UPDATE update "SYS"."TSQ$" set "GRANTO..... update .......

SCOTT SYS UPDATE update "SYS"."SEG$" set "TYPE#" = '5'.. update......

As per above result user SCOTT has updated SYS objects so, if you query on USERNAME, you may get incorrect result. So, better to query v$logmnr_contents on SEG_OWNER.

4. Identifying Operation Counts

Run the following query to see the OPERATION code row count from v$logmnr_contents, to understand which OPERATION code has generated lots of redo information.

SQL> select operation,count(*) from v$logmnr_contents group by operation;

OPERATION COUNT(*)

-------------------- ----------

COMMIT 22236

DDL 2

DELETE 1

INSERT 11

INTERNAL 11

SELECT_FOR_UPDATE 32487

START 22236

UPDATE 480

8 rows selected

5. Identifying User Counts

Run the following query to check user activity and operation counts:

SQL> select seg_owner,operation,count(*) from v$logmnr_contents group by seg_owner,operation;

SEG_OWNER OPERATION COUNT(*)

-------------------- ---------------- ---------

SCOTT COMMIT  22236

SCOTT DDL 2

SCOTT DELETE 1

...

BILLY COMMIT 12899

BILLY DDL 5

BILLY DELETE 2

...

NOTE: 

Be aware of next known issue:

If you are not using "select for update" statements often in your application and yet find a high operation count for operation code "SELECT_FOR_UPDATE" then you might be hitting a known issue.

To confirm this check whether SQL_REDO shows select,update statements on AQ$_QUEUE_TABLE_AFFINITIES and AQ$_QUEUE_TABLES.

If you see these selects and updates, then check the value of the Init.ora parameter AQ_TM_PROCESSES.  The default value is AQ_TM_PROCESSES = 0 meaning that the queue monitor is not created.

If you are not using Advanced Queuing, then set AQ_TM_PROCESSES back to zero to avoid lots of redo generation on objects AQ$_QUEUE_TABLE_AFFINITIES and AQ$_QUEUE_TABLES.

如何追踪产生大量REDO的来源的更多相关文章

  1. 【恢复,1】 redo 日志恢复的各种情况

    Recovering After the Loss of Online Redo Log Files If a media failure has affected the online redo l ...

  2. 怎么知道RTL Schematic中的instance与哪段代码对应呢

    2013-06-23 20:15:47 ISE综合后可以看到RTL Schematic,但我们知道在RTL编码时,要经常问自己一个问题“我写的这段代码会综合成什么样的电路呢”.对于一个简单的设计,比如 ...

  3. CVE-2010-2883Adobe Reader和Acrobat CoolType.dll栈缓冲区溢出漏洞分析

       Adobe Acrobat和Reader都是美国Adobe公司开发的非常流行的PDF文件阅读器. 基于Window和Mac OS X的Adobe Reader和Acrobat 9.4之前的9.x ...

  4. UAVStack的慢SQL数据库监控功能及其实现

    UAVStack是一个全维监控与应用运维平台.UAV.Monitor具备监控功能,包含基础监控.应用/服务性能监控.日志监控.业务监控等.在应用监控中,UAV可以根据应用实例画像:其中应用实例组件可以 ...

  5. 通过代码审计找出网站中的XSS漏洞实战(三)

    一.背景 笔者此前录制了一套XSS的视频教程,在漏洞案例一节中讲解手工挖掘.工具挖掘.代码审计三部分内容,准备将内容用文章的形式再次写一此,前两篇已经写完,内容有一些关联性,其中手工XSS挖掘篇地址为 ...

  6. 【Web开发】到底什么是短链接

    目录 什么是短链接 为什么使用短链接 节省发送的内容 提升用户体验 便于链接追踪,分析点击来源 一定程度上保护原始网站链接 短链接生成平台 短链接生成原理 参考 今天无意中看到一个名词--" ...

  7. Hadoop-No.11之元数据

    元数据的重要性 三个重要理由,让我们不得不在意元数据 元数据允许用户通过一张表的高一级逻辑抽象,而不是HDFS中文件的简单几何,或者HBase中的表来与数据交互.这意味着用户不比关心数据是如何存储的, ...

  8. iOS 中的 Deferred Deep Linking(延迟深度链接)

    http://www.cocoachina.com/ios/20160105/14871.html Deep Linking 其实 deep linking 并不是一个新名词,在 web 开发领域,区 ...

  9. dubbo 2.7应用级服务发现踩坑小记

    本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star. 背景 本文记录最近一位读者反馈的dubbo 2.7.x中应用级服务发现的问题,关于dubbo应 ...

随机推荐

  1. oAuth2授权协议 & 微信授权登陆和绑定 & 多环境共用一个微信开发平台回调设置

    OAuth2(open Auth)开放授权协议 授权码模式流程: 1.浏览器(客户端)点击一个比如使用微信登陆按钮 2.会跳到认证服务器页面,让用户选择是否授权 3.如果用户点击授权,那么会跳转到开始 ...

  2. RC terms.

    ETA: estimated time of arrival DEA: 1-Leg: 2-Leg: FCC: L10N: LocalizatioN i18N: InternationalizatioN ...

  3. ubuntu linux adb devices no permissions解决办法

    最近在调试安卓手机时老是失败,问题如下所示 han@ubuntu:~/project/zero_app$ adb devices List of devices attached 664768297c ...

  4. web存储中cookie、session区别

    http协议是一种无状态的协议,浏览器对服务器的每一次请求都是独立的.为了使得web能够产生一些动态信息,就需要保存”状态”,而cookie和session机制就是为了解决http协议无状态而产生.c ...

  5. 【转】【数据结构】【有n个元素依次进栈,则出栈序列有多少种】

    卡特兰数 大神解释:https://blog.csdn.net/akenseren/article/details/82149145      权侵删 原题 有一个容量足够大的栈,n个元素以一定的顺序 ...

  6. 问题集 & 知识点

    芝士 [事件绑定的三种方法] 在以类继承的方式定义的组件中,为了能方便地调用当前组件的其他成员方法或属性(如:this.state),通常需要将事件处理函数运行时的 this 指向当前组件实例. 绑定 ...

  7. linux下安装部署ansible

    linux下安装部署ansible 介绍 Ansible是一种批量部署工具,现在运维人员用的最多的三种开源集中化管理工具有:puppet,saltstack,ansible,各有各的优缺点,其中sal ...

  8. using eclipse to write c programe

    参考:http://developer.51cto.com/art/200906/126363.htm http://www.cnblogs.com/feisky/archive/2010/03/21 ...

  9. Android 多媒体 播放音视频

    1.播放音频 因为涉及到读取文件,所以需要申请权限 <uses-permission android:name="android.permission.WRITE_EXTERNAL_S ...

  10. npm那些事儿

    npm,Node Package Manager,是node.js的模块依赖管理工具,安装nodejs时,一般会附带npm包管理工具. 一.npm相关1.npm的用途 能解决NodeJS代码部署上的很 ...