1576

const int mod = 9973;

n = a - a / mod * mod;

a / b = ans;

ans * b = a = a / mod * mod + n;

n = b * ans - a / mod * mod;

n = b * ans + mod * y;

extended_gcd(b, mod, ans, y);

 #define PRON "hdu1576"
#define LL "%lld"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int MOD = ; int Tcase; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif ll a, b, x, y; scanf("%d", &Tcase);
while (Tcase --){
scanf(LL LL, &a, &b);
extended_gcd(b, MOD, x, y);
x = ((x * a % MOD) + MOD) % MOD;
printf(LL "\n", x);
}
}

hdu1576

2824

Σphi[i]

 #define PRON "hdu2824"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll; const int MAXN = ; int n, m;
ll phi[MAXN + ]; void get_phi(){
memset(phi, , sizeof phi);
phi[] = ;
for (int i = ; i <= MAXN; i ++)
if (!phi[i]){
for (int j = i; j <= MAXN; j += i){
if (!phi[j])
phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif get_phi();
for (int i = ; i <= MAXN; i ++)
phi[i] += phi[i - ]; while (scanf("%d %d", &n, &m) == )
cout << phi[m] - phi[n - ] << endl;
}

hdu2824

1573

中国剩余定理的一般形式

 #define PRON "hdu1573"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef int ll; const int MAXN = + ; int Tcase, _max, n, a[MAXN], b[MAXN]; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} ll normal_crt(){
ll m1, m2, r1, r2, x, y; //solve N = r1 (mod m1)
// N = r2 (mod m2)
m1 = a[], r1 = b[];
for (int i = ; i < n; i ++){
m2 = a[i], r2 = b[i]; //solve d = x * m1 + y * m2
//(x, y) is the solution to the equation above
//solve c = r2 - r1 = y * m2 - x * m1
//(x0, y0) is the solution to the equation above
//x0 = x * c / d, y0 = x * c / d
ll d = extended_gcd(m1, m2, x, y);
ll c = r2 - r1;
if (c % d)
return ; ll t = m2 / d;
x = (x * c / d % t + t) % t; //r1 is the solution to the equaions from 1st to ith
r1 += m1 * x;
//m1 is the lcm of m1 to mi
m1 *= t;
} if (_max < r1)
return ; //if (x0, y0) is one of the solution
//(x0 + k * m2 / d, y0 - k * m1 / d) (k -> Z) also apply
return (_max - r1) / m1 + - (bool)(r1 == );
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif scanf("%d", &Tcase);
while (Tcase --){
scanf("%d %d", &_max, &n);
for (int i = ; i < n; i ++)
scanf("%d", a + i);
for (int i = ; i < n; i ++)
scanf("%d", b + i); printf("%d\n", normal_crt());
}
}

1573

1370

中国剩余定理

 #define PRON "hdu1370"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef int ll; const int MAXN = ;
const int MOD = ; int Tcase, cnt, st, a[MAXN], b[MAXN]; ll extended_gcd(ll a, ll b, ll & x, ll & y){
if (b == ){
x = , y = ;
return a;
} ll d = extended_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y; return d;
} ll inv(ll a, ll n){
ll x, y;
ll d = extended_gcd(a, n, x, y);
return d == ? (x + n) % n : -;
} ll crt(int n){
ll ret = , m = ; for (int i = ; i < n; i ++)
a[i] %= b[i], m *= b[i]; for (int i = ; i < n; i ++)
ret = (ret + a[i] * (m / b[i]) * inv(m / b[i], b[i])) % m; ret -= st;
return ret + MOD * (bool)(ret <= );
} int main(){
#ifndef ONLINE_JUDGE
freopen(PRON ".in", "r", stdin);
#endif cnt = ;
b[] = , b[] = , b[] = ; scanf("%d", &Tcase);
while (scanf("%d %d %d %d", &a[], &a[], &a[], &st) == && !(a[] == - && a[] == - && a[] == -))
printf("Case %d: the next triple peak occurs in %d days.\n", ++ cnt, crt());
}

1370

HDU Math Problems的更多相关文章

  1. hdu some problems in Multi-University Training Contest

    hdu 6103 Kirinriki #include<bits/stdc++.h> using namespace std; int n,m,ans; ]; void doit(int ...

  2. Simple Math Problems

    整理下<算法笔记>,方便查看. 一.最大公约数&最小公倍数 欧几里得定理:设a,b均为正整数,那么gcd(a,b)=gcd(b,a%b). 若,定理就先交换a和b. 注意:0和任意 ...

  3. HDU 1220 Cube(数学,找规律)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    M ...

  4. hdu 1220 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  5. HDOJ/HDU 1085 Holding Bin-Laden Captive!(非母函数求解)

    Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...

  6. HDU 1085 Holding Bin-Laden Captive! (母函数)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  7. hdu 1085 Holding Bin-Laden Captive!

    Problem Description We all know that Bin-Laden is a notorious terrorist, and he has disappeared for ...

  8. HDU 1085-Holding Bin-Laden Captive!(生成功能)

    Holding Bin-Laden Captive! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  9. HUST 1555 A Math Homework

    1555 - A Math Homework 时间限制:1秒 内存限制:128兆 338 次提交 131 次通过 题目描述     QKL is a poor and busy guy, and he ...

随机推荐

  1. Random Javascript code snippets

    MollyPages.org"You were wrong case.To live here is to live." Home Pages / Database / Forms ...

  2. 在html中关于如果function的函数名和input的name一样会发生怎样的现象

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="2_PageMethods. ...

  3. Python 多线程 Condition 的使用

    Condition Condition(条件变量)通常与一个锁关联.需要在多个Contidion中共享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例. 可 ...

  4. Net分布式系统之三:Keepalived+LVS+Nginx负载均衡之高可用

    上一篇写了nginx负载均衡,此篇实现高可用(HA).系统整体设计是采用Nginx做负载均衡,若出现Nginx单机故障,则导致整个系统无法正常运行.针对系统架构设计的高可用要求,我们需要解决Nginx ...

  5. navicat 连接oracle 出现ora06413 连接未打开

    问题原因:未选择OCI执行DLL,和windows 64位的(x86)无关 解决方法:navicat中 工具->选项->OCI中的OCI library选择路径(navimat安装路径)C ...

  6. 关于sizeof 跟strlen 的区别

    char *t = "我a"; char t1[MAX_PATH] = "aaaaaa"; char display1[MAX_PATH]; char disp ...

  7. Node debug

    node-inspector & node --debug-brk   test.js 在 chrome 中调试 'use strict'; var P2PSpider = require(' ...

  8. 注解式开发spring定时器

    1:spring 配置文件中增加这句    <task:annotation-driven/>  2:确保扫描程序能够扫描后  下面第3步骤的java类    <context:co ...

  9. Tomcat 设置

    bin/catalina.bat--增加内存 set JAVA_OPTS=...后面加上 set JAVA_OPTS=-Xmx1024M -Xms512M -XX:MaxPermSize=256m c ...

  10. 第15章 .NET中的反射

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.R ...