hdu2243
一天,Lele在某本单词书上看到了一个根据词根来背单词的方法。比如"ab",放在单词前一般表示"相反,变坏,离去"等。
于是Lele想,如果背了N个词根,那这些词根到底会不会在单词里出现呢。更确切的描述是:长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
这个只是很小的情况。而对于其他复杂点的情况,Lele实在是数不出来了,现在就请你帮帮他。
aa ab
1 2
a
52
#include<cstring>
#include<queue>
#include<iostream>
#include<algorithm>
using namespace std;
typedef unsigned long long LL;
struct Mat
{
LL mat[36][36];
int n;
Mat(int _n)
{
n=_n;
memset(mat,0,sizeof(mat));
}
Mat operator *(const Mat &B)const
{
Mat C(n);
for(int k=0; k<n; ++k)
for(int i=0; i<n; ++i)
{
if(mat[i][k]==0) continue;
for(int j=0; j<n; ++j)
{
if(B.mat[k][j]==0) continue;
C.mat[i][j]=C.mat[i][j]+mat[i][k]*B.mat[k][j];
}
}
return C;
}
Mat operator ^(int k)
{
Mat C(n);
for(int i=0; i<n; ++i) C.mat[i][i]=1;
while(k)
{
if(k&1) C=C*(*this),--k;
k>>=1;
*this=(*this)*(*this);
}
return C;
}
};
struct AC
{
int ch[38][26],fail[38],val[38],sz,rt;
void init()
{
sz=rt=0;
memset(ch[rt],-1,sizeof(ch[rt]));
}
void insert(char *str)
{
int len=strlen(str),u=rt;
for(int i=0; i<len; ++i)
{
if(ch[u][str[i]-'a']==-1)
{
++sz;
memset(ch[sz],-1,sizeof(ch[sz]));
val[sz]=0;
ch[u][str[i]-'a']=sz;
}
u=ch[u][str[i]-'a'];
}
val[u]=1;
}
void build()
{
queue<int>Q;
int u=rt;
for(int i=0; i<26; ++i)
{
if(ch[u][i]==-1) ch[u][i]=rt;
else
{
fail[ch[u][i]]=rt;
Q.push(ch[u][i]);
}
}
while(!Q.empty())
{
u=Q.front();
Q.pop();
val[u]|=val[fail[u]];
for(int i=0; i<26; ++i)
{
if(ch[u][i]==-1) ch[u][i]=ch[fail[u]][i];
else
{
fail[ch[u][i]]=ch[fail[u]][i];
Q.push(ch[u][i]);
}
}
}
}
Mat get()
{
Mat ret(sz+2);
for(int i=0; i<=sz; ++i)
for(int j=0; j<26; ++j)
if(!val[ch[i][j]]) ++ret.mat[i][ch[i][j]];
for(int i=0; i<=sz+1; ++i)
ret.mat[i][sz+1]=1;
return ret;
}
} ac;
char s[55];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
ac.init();
for(int i=0; i<n; ++i)
{
scanf("%s",s);
ac.insert(s);
}
ac.build();
Mat A=ac.get();
A=A^m;
LL res=0;
for(int i=0; i<A.n; ++i)
res+=A.mat[0][i];
--res;
A=Mat(2);
A.mat[0][0]=26;
A.mat[1][1]=A.mat[0][1]=1;
A=A^m;
Mat B(2);
B.mat[0][0]=B.mat[1][0]=1;
A=A*B;
LL ans=A.mat[0][0];
ans-=res+1;
cout<<ans<<endl;
}
}
hdu2243的更多相关文章
- 【AC自动机】【矩阵乘法】【等比数列】hdu2243 考研路茫茫——单词情结
题解:http://blog.csdn.net/xingyeyongheng/article/details/10005923 这里采用了二分法求等比数列前n项和. 等比数列前n项和也可以用矩乘快速幂 ...
- HDU2243 考研路茫茫——单词情结 ——AC自动机、矩阵优化
题目链接:https://vjudge.net/problem/HDU-2243 考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memor ...
- HDU-2243 考研路茫茫——单词情结(AC自动机)
题目大意:给n个单词,长度不超过L的单词有多少个包含n个单词中的至少一个单词. 题目分析:用长度不超过L的单词书目减去长度在L之内所有不包含任何一个单词的书目. 代码如下: # include< ...
- hdu2243考研路茫茫——单词情结(ac+二分矩阵)
链接 跟2778差不多,解决了那道题这道也不成问题如果做过基本的矩阵问题. 数比较大,需要用unsigned longlong 就不需要mod了 溢出就相当于取余 #include <iostr ...
- HDU2243 考研路茫茫——单词情结(AC自动机+矩阵快速幂)
与POJ2778一样.这题是求长度不超过n且包含至少一个词根的单词总数. 长度不超过n的单词总数记为Sn,长度不超过n不包含词根的单词总数记为Tn. 答案就是,Sn-Tn. Sn=26+262+263 ...
- POJ2778&HDU2243&POJ1625(AC自动机+矩阵/DP)
POJ2778 题意:只有四种字符的字符串(A, C, T and G),有M中字符串不能出现,为长度为n的字符串可以有多少种. 题解:在字符串上有L中状态,所以就有L*A(字符个数)中状态转移.这里 ...
- hdu2243考研路茫茫——单词情结
Problem Description 背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如&q ...
- hdu2243之AC自动机+矩阵乘法
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU2243 考研路茫茫――单词情结
Description 背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab&q ...
- hdu2243 考研路茫茫——单词情结【AC自动机】【矩阵快速幂】
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- Linux网络服务第二章DHCP原理与配置
1.笔记 服务端端口:67 客户端端口:68 dhcliemt -r:释放IP地址 dhcliemt -d:重新获取IP地址 :.,$ s/190.168.200 / 192.168.100 /g 从 ...
- while循环脚本
[root@oldboy ~]# (while :;do date;sleep 5;done)& fg ctrl c退出 fg ( while :; do date; sleep 5; don ...
- 【Linux常见命令】cut命令
cut - remove sections from each line of files 参数: -b 可以按字节来查看文件中的内容 -b参数用在中文上,容易出现乱码问题.因为中文字符一个字符占两个 ...
- java switch用法
为什么80%的码农都做不了架构师?>>> Java 7中,switch的参数可以是String类型了,这对我们来说是一个很方便的改进.到目前为止switch支持这样几种数据类型: ...
- 运行node 报错 throw er; // Unhandled 'error' event
错误提示 此端口已被占用,改换其他端口
- 图论--最短路--SPFA
SPFA算法(shortest path faster algorithm)算法是西南交通大学段凡丁于1994年发表的,它在Bellman-ford算法的基础上进行了改进,使其在能够处理待负权图的单元 ...
- Java——SSM整合所需的Maven配置文件
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...
- A. A Twisty Movement dp
https://codeforces.com/problemset/problem/933/A 这个是一个dp,但是我并没有看出来,然后也不太会写, 这种题一般应该要想到先预处理前缀和后缀,然后再进行 ...
- C# 数据操作系列 - 3. ADO.NET 离线查询
0. 前言 在上一篇中,我故意留下了查询的示范没讲.虽然说可以通过以下代码获取一个DataReader: IDataReader reader = command.ExecuteReader(); 然 ...
- Java Stream 流如何进行合并操作
1. 前言 Java Stream Api 提供了很多有用的 Api 让我们很方便将集合或者多个同类型的元素转换为流进行操作.今天我们来看看如何合并 Stream 流. 2. Stream 流的合并 ...