今天我们将利用python+OpenCV实现对视频中物体数量的监控,达到视频监控的效果,比如洗煤厂的监控水龙头的水柱颜色,当水柱为黑色的超过了一半,那么将说明过滤网发生了故障。当然不仅如此,我们看的是图像视频处理的技巧,你也可以将项目迁移到其他地方等,这仅仅是一个例子而已。我们知道计算机视觉中关于图像识别有四大类任务:

 

分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。

定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。

检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。

分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。

而定位不仅需要找到物体的位置在哪里,还需要能够统计目标的数目以及物体状态。

除了图像分类以外,目标检验要解决问题的架构难题是:

1.目标有可能经常出现在影像的任何方位;

2.目标有各种有所不同的尺寸;

3.目标有可能有各种有所不同的外形。

如果用矩形框来界定目的,则长方形有有所不同的清晰度。由于目的的清晰度有所不同,因此使用经典之作的转动视窗+影像图形的计划解决问题标准化目的检验难题的生产成本太低。近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它们是two-stage的,需要先算法产生目标候选框,也就是目标位置,然后再对候选框做分类与回归。而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个卷积神经网络CNN直接预测不同目标的类别与位置。第一类方法是准确度高一些,但是速度慢,但是第二类算法是速度快,但是准确性要低一些。那么今天我们的项目并不会太多的讲解各种算法,而是我们的核心主题,目标数量识别。

那么我们将如何进行实现呢

多说无益,下面可以开始实现我们的项目。

首先导入相关的库

import cv2
from PIL import Image
from PIL import ImageDraw,ImageFont
import numpy as np

接着我们需要把水龙头流出水柱的部分提取出来,即需要把图片预先处理成这样,作为背景图来用,名为3ji.jpg如图所示:

然后通过图像作差的方法找到水柱的部分,首先就需要将图像转彩灰度图然后高斯模糊便于计算,当然其实不这样也是可以的。其中2.jpg是测试的图片,

代码如下:

'''3ji是背景图不可换,调试换另一个图片,3ji自己用画图找到水的位置清除掉水柱即可,所以说摄像头不能动'''
firstframe=cv2.imread("3ji.jpg")
firstframe= cv2.cvtColor(firstframe, cv2.COLOR_BGR2GRAY)
firstframe= cv2.GaussianBlur(firstframe, (21, 21), 0)
secondframe0=cv2.imread("2.jpg")
secondframe0= cv2.cvtColor(secondframe0, cv2.COLOR_BGR2GRAY)
secondframe= cv2.GaussianBlur(secondframe0, (21, 21), 0)
frameDelta = cv2.absdiff(firstframe, secondframe)
x,y=frameDelta.shape
print(x,y)

接着通过边缘检测找到水柱边界,方便查看。

#frameDelta和canny一个是区域一个是轮廓
img = cv2.GaussianBlur(frameDelta,(3,3),0)
canny = cv2.Canny(img, 0, 100)

定义水柱总面积变量。清水面积变量,ss数组存储像素值位置

area=0 #6687,总面积
qingarea=0
ss=[]

然后画出轮廓,并记录水柱处像素值得位置

#画轮廓,存储要识别的像素值位置,记录在ss数组中
for i in range(x):
       for j in range(y):
           if any(frameDelta[i,j]!=[0,0,0]):#白色的时候,占位
               ss.append([i,j])

然后以原图加轮廓图显示,图片相加即可:

canny0=cv2.add(secondframe0,canny)

接着根据像素值大小判断颜色,通过调试这个项目的阈值是50

#判断水柱颜色,清水占多少像素
for t in ss:
   k,l=t
   area=area+1
   if canny0[k, l] > 50:
       print(canny0[k,l])
       qingarea+=1
接着统计黑色水柱占比率为多少
deta=(qingarea/area)*100
print(qingarea)
pred="清水占比为"+str(deta)+"%"
print(pred)

最后输出图像结果:

cv2.imwrite("pred.jpg",canny0)
canny0=cv2.imread("pred.jpg")
img_PIL = Image.fromarray(cv2.cvtColor(canny0, cv2.COLOR_BGR2RGB))
myfont = ImageFont.truetype(r'C:/Windows/Fonts/simfang.ttf', 40)
draw = ImageDraw.Draw(img_PIL)
draw.text((200, 10), pred, font=myfont, fill=(255,23,140))
img_OpenCV = cv2.cvtColor(np.asarray(img_PIL), cv2.COLOR_RGB2BGR)
cv2.imshow("frame", img_OpenCV)
key = cv2.waitKey(0)

最终达到的演示效果如图所示:

清水占比96%,还是比较准确的

清水占比38%,黑水占比62%,也基本准确。

当然这仅仅是一个思路的问题,至少目前为止网上还没有对物体数目去监控的项目例子,尽管并不是如此高深,但是却是一个很好的探究方向。不仅仅是智能采矿的需要,也可以是智能农业或者智能畜牧业等方面监控的一个想法。当然大家也是可以再次基础上修改完善代码,完整的代码上面已经给出。伴随着移动互联网、手机及各交友的平台的较慢持续发展,照片的广泛传播幅度大大增强,广泛传播范围内也日益扩展。比起书写、视频、录像等广泛传播方式,照片广泛传播极具“点睛”视觉效果,合乎节奏贫困下人们高效的读者方法。

当照片给人们带给快捷的数据纪录和共享方法的同时,照片普遍地广泛传播在社会大众视线下,适当的难题也接踵而来。书写记述,使用者可以精彩通过关键字搜寻提供意愿数据,而当照片记述,使用者难以必要通过搜寻照片索引到可借助数据。

科技进步的变革常常与解决的表达意见如影随形,在使用者痛点下,亟需高科技的改进创意,此自然环境下涌现的图像识别新技术之后变得尤为重要。由此也可见计算机视觉的日益高涨的地位。

如何通过 Python 和 OpenCV 实现目标数量监控?的更多相关文章

  1. Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...

  2. Python 图像处理 OpenCV (6):图像的阈值处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  3. Python 图像处理 OpenCV (7):图像平滑(滤波)处理

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Python 图像处理 OpenCV (12): Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  5. Python 图像处理 OpenCV (13): Scharr 算子和 LOG 算子边缘检测技术

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  6. Python 图像处理 OpenCV (14):图像金字塔

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  7. Python 图像处理 OpenCV (15):图像轮廓

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  8. Python 图像处理 OpenCV (16):图像直方图

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  9. 用 Python 和 OpenCV 检测图片上的条形码

      用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问 ...

随机推荐

  1. Hive的存储和MapReduce处理——数据清洗

    日期:2019.11.13 博客期:115 星期三 Result文件数据说明: Ip:106.39.41.166,(城市) Date:10/Nov/2016:00:01:02 +0800,(日期) D ...

  2. java set的线程安全

    CopyOnWriteArraySet和ConcurrentSkipListSet 与线程不安全的集合类的对应关系 HashSet -> CopyOnWriteArraySet TreeSet ...

  3. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:条纹表格

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. 如何更改linux(centos)下的Apache http端口号

    # vi  /etc/httpd/conf/httpd.conf  文件 修改两个地方     #Listen 12.34.56.78:80     Listen 80     #把80改为你设置的端 ...

  5. 记录要做的事情,把sql字符串替换写成工具网页。

    之前使用的是java的本地控制台进行sql占位符的替换. 现在我想换个方式,想到了两种. 第一种是使用java +jsp进行替换,前台输出. 第二种是把java代码改成js代码,反正也不用访问数据库. ...

  6. require - 引入文件

    导入 /** * Creates the node for the load command. Only used in browser envs. */ req.createNode = funct ...

  7. Metasploit学习笔记——社会工程学

    1.社会工程学攻击案例——伪装木马 Linux命令终端输入命令msfvenom -l payloads用来列出攻击载荷,grep命令用来查询所需要的攻击载荷,条件是windows系统.要有回连至监听主 ...

  8. 068、Java面向对象之声明两个对象

    01.代码如下: package TIANPAN; class Book { // 定义一个新的类 String title; // 书的名字 double price; // 书的价格 public ...

  9. C++Review15_内存管理

    一.野指针 定义指针变量时最好初始化为NULL: 内存回收后,指针也用完了,这时候也需要及时将指针置为NULL: 指针就像野狗一样,为了防止它乱指,除了在使用期间,别的时候都需要置为NULL.这样它就 ...

  10. CCF 201703-4 地铁修建(最小生成树)

    题意:A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n号枢纽间修建一条地铁.地铁由很多段隧道组成,每段隧道连接两个交通枢纽.经过勘探,有m段隧道作为候选,两个交通枢纽之 ...