SciPy 图像处理
章节
图像处理和分析通常被看作是对二维值数组的操作。然而,在一些领域中,必须对高维数的图像进行处理分析,例如,医学成像和生物成像。由于对多维特性的良好支持,numpy非常适合这种类型的应用程序。scipy.ndimage包提供了许多通用的图像处理和分析功能,这些功能支持操作任意维度的数组。
scipy.ndimage中提供了图像矩阵变换、图像滤波、图像卷积等功能。
旋转图片
旋转图片,可以使用ndimage.rotate函数。
测试图片下载: face.png
示例
加载原图片
from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
# 加载图片
face = mpimg.imread('./face.png')
# 显示图片
plt.imshow(face)
# plt.savefig('./img2-1.png') # 保存要显示的图片
plt.show()
输出
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NTwDVFBg-1571731533309)(https://www.qikegu.com/wp-content/uploads/2019/06/img2-1.png)]
示例
from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
# 加载图片
face = mpimg.imread('./face.png')
# 旋转图片
rotate_face = ndimage.rotate(face, 45)
plt.imshow(rotate_face)
# plt.savefig('./img3-1.png') # 保存要显示的图片
plt.show()
输出
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-roYeWLno-1571731533312)(https://www.qikegu.com/wp-content/uploads/2019/06/img3-1.png)]
图像滤波
图像滤波是一种修改/增强图像的技术。例如,可以通过图像滤波突出图像的某些特性,弱化或滤除图像的另一些特性。滤波有很多种,例如:平滑、锐化、边缘增强等等。
示例
对图像进行高斯滤波。高斯滤波是一种模糊滤波,广泛用于滤除图像噪声。
from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
# 加载图片
face = mpimg.imread('./face.png')
# 处理图片
face1 = ndimage.gaussian_filter(face, sigma=3)
# 显示图片
plt.imshow(face1)
# plt.savefig('./img4-1.png') # 保存要显示的图片
plt.show()
输出
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ri8BeFuk-1571731533317)(https://www.qikegu.com/wp-content/uploads/2019/06/img4-1.png)]
sigma=3
表示模糊程度为3,我们可以通过调整sigma值,来比较图像质量的变化。
边缘检测
边缘检测是一种寻找图像中物体边界的图像处理技术。它的原理是通过检测图像中的亮度突变,来识别物体边缘。边缘检测在图像处理、计算机视觉、机器视觉等领域中广泛应用。
常用边缘检测算法包括:
- Sobel
- Canny
- Prewitt
- Roberts
- Fuzzy Logic methods
让我们考虑下面的例子。
import scipy.ndimage as nd
import numpy as np
im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8)
import matplotlib.pyplot as plt
plt.imshow(im)
# plt.savefig('./img5-1.png') # 保存要显示的图片
plt.show()
上面的程序将生成以下输出。
图像看起来像一个正方形的色块,我们将检测这些彩色块的边缘。这里使用ndimage的Sobel函数来检测图像边缘,该函数会对图像数组的每个轴分开操作,产生两个矩阵,然后我们使用NumPy中的Hypot函数将这两个矩阵合并为一个矩阵,得到最后结果。
示例
import scipy.ndimage as nd
import numpy as np
import matplotlib.pyplot as plt
im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8)
sx = nd.sobel(im, axis = 0, mode = 'constant')
sy = nd.sobel(im, axis = 1, mode = 'constant')
sob = np.hypot(sx, sy)
plt.imshow(sob)
# plt.savefig('./img6-1.png') # 保存要显示的图片
plt.show()
上面的程序将生成以下输出。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qc6G227y-1571731533323)(https://www.qikegu.com/wp-content/uploads/2019/06/img6-1.png)]
SciPy 图像处理的更多相关文章
- scipy 图像处理-深度学习
scipy 图像处理(scipy.misc.scipy.ndimage).matplotlib 图像处理 from scipy.misc import imread / imsave / imshow ...
- scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理
from scipy.misc import imread / imsave / imshow imresize / imrotate / imfilter 1. scipy.misc 下的图像处理 ...
- SciPy 信号处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 统计
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 线性代数
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 优化
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 积分
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 插值
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 输入输出
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
随机推荐
- dpkg 命令
dpkg 是Debian Package的简写,是为Debian 专门开发的套件管理系统,方便软件的安装.更新及移除.所有源自Debian的Linux发行版都使用dpkg,例如Ubuntu.Knopp ...
- layer 当前页获取iframe页的DOM元素
layer.layui 开启iframe 之后,获取iframe 内容做自定义处理. parent.layer.open({ type: , title: '任務執行狀況.', shadeClose ...
- Tomcat认识
Tomcat目录结构: bin:存放启动和关闭的一些脚本 common:共享(部署在该服务器上的一些)jar包 conf:存放服务器的一些配置文件 webapps:部署文件 work:服务器运行时,产 ...
- 【原】openresty学习
参考文档: 1.openresty最佳实践:https://moonbingbing.gitbooks.io/openresty-best-practices/content/ 2.openResty ...
- SpringBoot + redis + @Cacheable注解实现缓存清除缓存
一.Application启动类添加注解 @EnableCaching 二.注入配置 @Bean public CacheManager cacheManager(RedisTemplate redi ...
- Codeforces Round #584 - Dasha Code Championship - Elimination Round (rated, open for everyone, Div. 1 + Div. 2)C
#define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;string s;pair<int,in ...
- 「JSOI2010」满汉全席
前言 由于蒟蒻才刚开始学 \(\text{2-SAT}\),所以题解中有的地方可能不够精炼,望多包涵! 题目描述 题目意思很简单,标准的\(\text{2-SAT}\)问题模型.那么我们就先来介绍一下 ...
- 117、Java中String类之去掉左右空格
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- 【剑指Offer面试编程题】题目1370:数组中出现次数超过一半的数字--九度OJ
题目描述: 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2 ...
- 【剑指Offer面试编程题】题目1518:反转链表--九度OJ
题目描述: 输入一个链表,反转链表后,输出链表的所有元素. (hint : 请务必使用链表) 输入: 输入可能包含多个测试样例,输入以EOF结束. 对于每个测试案例,输入的第一行为一个整数n(0< ...