图像处理和分析通常被看作是对二维值数组的操作。然而,在一些领域中,必须对高维数的图像进行处理分析,例如,医学成像和生物成像。由于对多维特性的良好支持,numpy非常适合这种类型的应用程序。scipy.ndimage包提供了许多通用的图像处理和分析功能,这些功能支持操作任意维度的数组。

scipy.ndimage中提供了图像矩阵变换、图像滤波、图像卷积等功能。

旋转图片

旋转图片,可以使用ndimage.rotate函数。

测试图片下载: face.png

示例

加载原图片

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 显示图片
plt.imshow(face)
# plt.savefig('./img2-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NTwDVFBg-1571731533309)(https://www.qikegu.com/wp-content/uploads/2019/06/img2-1.png)]

示例

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 旋转图片
rotate_face = ndimage.rotate(face, 45) plt.imshow(rotate_face)
# plt.savefig('./img3-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-roYeWLno-1571731533312)(https://www.qikegu.com/wp-content/uploads/2019/06/img3-1.png)]

图像滤波

图像滤波是一种修改/增强图像的技术。例如,可以通过图像滤波突出图像的某些特性,弱化或滤除图像的另一些特性。滤波有很多种,例如:平滑、锐化、边缘增强等等。

示例

对图像进行高斯滤波。高斯滤波是一种模糊滤波,广泛用于滤除图像噪声。

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 处理图片
face1 = ndimage.gaussian_filter(face, sigma=3) # 显示图片
plt.imshow(face1)
# plt.savefig('./img4-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ri8BeFuk-1571731533317)(https://www.qikegu.com/wp-content/uploads/2019/06/img4-1.png)]

sigma=3表示模糊程度为3,我们可以通过调整sigma值,来比较图像质量的变化。

边缘检测

边缘检测是一种寻找图像中物体边界的图像处理技术。它的原理是通过检测图像中的亮度突变,来识别物体边缘。边缘检测在图像处理、计算机视觉、机器视觉等领域中广泛应用。

常用边缘检测算法包括:

  • Sobel
  • Canny
  • Prewitt
  • Roberts
  • Fuzzy Logic methods

让我们考虑下面的例子。

import scipy.ndimage as nd
import numpy as np im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) import matplotlib.pyplot as plt
plt.imshow(im)
# plt.savefig('./img5-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

图像看起来像一个正方形的色块,我们将检测这些彩色块的边缘。这里使用ndimage的Sobel函数来检测图像边缘,该函数会对图像数组的每个轴分开操作,产生两个矩阵,然后我们使用NumPy中的Hypot函数将这两个矩阵合并为一个矩阵,得到最后结果。

示例

import scipy.ndimage as nd
import numpy as np
import matplotlib.pyplot as plt im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) sx = nd.sobel(im, axis = 0, mode = 'constant')
sy = nd.sobel(im, axis = 1, mode = 'constant')
sob = np.hypot(sx, sy) plt.imshow(sob)
# plt.savefig('./img6-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qc6G227y-1571731533323)(https://www.qikegu.com/wp-content/uploads/2019/06/img6-1.png)]

SciPy 图像处理的更多相关文章

  1. scipy 图像处理-深度学习

    scipy 图像处理(scipy.misc.scipy.ndimage).matplotlib 图像处理 from scipy.misc import imread / imsave / imshow ...

  2. scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理

    from scipy.misc import imread / imsave / imshow imresize / imrotate / imfilter 1. scipy.misc 下的图像处理 ...

  3. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. Linux kali安装chromium

    打开终端,输入以下命令 apt-get install chromium chromium-l10n

  2. DBC的故事(二)

    上篇介绍了MSB和LSB,此篇介绍更复杂的:有符号和无符号数. 1.信号符号 CAN信号有其物理意义,如温度.扭矩等,这些信号是有负值的,常见的解决方案有2种: 1)把offset设成负值 如温度of ...

  3. java8新特性1:lambda表达式和函数式接口

    1.lambda的介绍: 1.1.为什么java语言需要引入lambda表达式? java语言诞生于1995年,历史时间已经相对较长了.在其后的各种新型编程语言中,都有着lambda表达式的内容,并且 ...

  4. Mysql 分组查询出现'this is incompatible with sql_mode=only_full_group_by'的解决办法

    由于Mysql自动开启了 only_full_group_by,所以若查询的字段不在group by里面,则分组报错. 解决办法其一:mysql配置,关闭only_full_group_by,这种办法 ...

  5. Vue日常报错

    报错信息: Error: Cannot find module 'webpack/bin/config-yargs' at Function.Module._resolveFilename (inte ...

  6. luogu P2704 炮兵阵地(经典状态压缩DP)

    方格有m*n个格子,一共有2^(m+n)种排列,很显然不能使用暴力法,因而选用动态规划求解. 求解DP问题一般有3步,即定义出一个状态 求出状态转移方程 再用算法实现.多数DP题难youguan点在于 ...

  7. Pytorch本人疑问(1) torch.nn和torch.nn.functional之间的区别

    在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看 ...

  8. Java基础 -1.2

    Shell是脚本程序的含义 在很多编程语言中为了方便使用者进行代码的开发 都会有shell交互式编程环境 可能是为了进行一些简短的程序验证 但是在java里面就必须编写很多的结果代码才可以实现 为了解 ...

  9. Android SDCard文件、目录操作【转】

    一.权限问题 参考:http://www.cnblogs.com/sky-zhang/p/3403393.html Android框架是基于Linux内核构建,所以Android安全系统也是基于Lin ...

  10. CDQ分治-陌上花开(附典型错误及原因)

    CDQ分治-陌上花开 题目大意 对于给遗传给定的序列: \[ (x,y,z)_1, (x,y,z)_2, (x,y,z)_3, \cdots, (x,y,z)_n \] 求: \[ \sum_{x_i ...