图像处理和分析通常被看作是对二维值数组的操作。然而,在一些领域中,必须对高维数的图像进行处理分析,例如,医学成像和生物成像。由于对多维特性的良好支持,numpy非常适合这种类型的应用程序。scipy.ndimage包提供了许多通用的图像处理和分析功能,这些功能支持操作任意维度的数组。

scipy.ndimage中提供了图像矩阵变换、图像滤波、图像卷积等功能。

旋转图片

旋转图片,可以使用ndimage.rotate函数。

测试图片下载: face.png

示例

加载原图片

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 显示图片
plt.imshow(face)
# plt.savefig('./img2-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NTwDVFBg-1571731533309)(https://www.qikegu.com/wp-content/uploads/2019/06/img2-1.png)]

示例

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 旋转图片
rotate_face = ndimage.rotate(face, 45) plt.imshow(rotate_face)
# plt.savefig('./img3-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-roYeWLno-1571731533312)(https://www.qikegu.com/wp-content/uploads/2019/06/img3-1.png)]

图像滤波

图像滤波是一种修改/增强图像的技术。例如,可以通过图像滤波突出图像的某些特性,弱化或滤除图像的另一些特性。滤波有很多种,例如:平滑、锐化、边缘增强等等。

示例

对图像进行高斯滤波。高斯滤波是一种模糊滤波,广泛用于滤除图像噪声。

from scipy import ndimage
import matplotlib.image as mpimg
import matplotlib.pyplot as plt # 加载图片
face = mpimg.imread('./face.png') # 处理图片
face1 = ndimage.gaussian_filter(face, sigma=3) # 显示图片
plt.imshow(face1)
# plt.savefig('./img4-1.png') # 保存要显示的图片
plt.show()

输出

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ri8BeFuk-1571731533317)(https://www.qikegu.com/wp-content/uploads/2019/06/img4-1.png)]

sigma=3表示模糊程度为3,我们可以通过调整sigma值,来比较图像质量的变化。

边缘检测

边缘检测是一种寻找图像中物体边界的图像处理技术。它的原理是通过检测图像中的亮度突变,来识别物体边缘。边缘检测在图像处理、计算机视觉、机器视觉等领域中广泛应用。

常用边缘检测算法包括:

  • Sobel
  • Canny
  • Prewitt
  • Roberts
  • Fuzzy Logic methods

让我们考虑下面的例子。

import scipy.ndimage as nd
import numpy as np im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) import matplotlib.pyplot as plt
plt.imshow(im)
# plt.savefig('./img5-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

图像看起来像一个正方形的色块,我们将检测这些彩色块的边缘。这里使用ndimage的Sobel函数来检测图像边缘,该函数会对图像数组的每个轴分开操作,产生两个矩阵,然后我们使用NumPy中的Hypot函数将这两个矩阵合并为一个矩阵,得到最后结果。

示例

import scipy.ndimage as nd
import numpy as np
import matplotlib.pyplot as plt im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im[90:-90,90:-90] = 2
im = nd.gaussian_filter(im, 8) sx = nd.sobel(im, axis = 0, mode = 'constant')
sy = nd.sobel(im, axis = 1, mode = 'constant')
sob = np.hypot(sx, sy) plt.imshow(sob)
# plt.savefig('./img6-1.png') # 保存要显示的图片
plt.show()

上面的程序将生成以下输出。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qc6G227y-1571731533323)(https://www.qikegu.com/wp-content/uploads/2019/06/img6-1.png)]

SciPy 图像处理的更多相关文章

  1. scipy 图像处理-深度学习

    scipy 图像处理(scipy.misc.scipy.ndimage).matplotlib 图像处理 from scipy.misc import imread / imsave / imshow ...

  2. scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理

    from scipy.misc import imread / imsave / imshow imresize / imrotate / imfilter 1. scipy.misc 下的图像处理 ...

  3. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  5. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  6. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 插值

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 输入输出

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. 【PAT甲级】1065 A+B and C (64bit) (20 分)(大数溢出)

    题意: 输入三个整数A,B,C(long long范围内),输出是否A+B>C. trick: 测试点2包括溢出的数据,判断一下是否溢出即可. AAAAAccepted code: #defin ...

  2. JAVA 常用包

    JAVA是以包的形式进行语言结构组织的. 引入这些包的关键词就是 import 下面说说 JAVA常用包有下面的几个 1. java.lang 这个是默认引入的,也是一个最基础的包.其中lang不是中 ...

  3. 浅谈CVE-2018-12613文件包含/buuojHCTF2018签到题Writeup

    文件包含 蒻姬我最开始接触这个 是一道buuoj的web签到题 进入靶机,查看源代码 <!DOCTYPE html> <html lang="en"> &l ...

  4. HTML常用标签效果展示

    HTML常用标签效果展示 一.文本效果 段落1---收到了开发建设看来得更加快乐圣诞节福利肯定是减肥的路上苏里科夫就是打开了飞机都是风口浪尖上的疯狂了大煞风景圣诞快乐的索科洛夫几点上课了关键是低空掠过 ...

  5. 小程序使用scroll-view横向滑动时,flex布局失效问题

    最近在完善以前项目,类目增多,需要进行横向滑动 实现方法1 可以在外盒子scroll-view使用white-space: nowrap来禁止子盒子换行,子盒子使用display: inline-bl ...

  6. Re库的基本使用

    # Re库的主要功能函数 """ re.search() 在一个字符串中搜索匹配正则表达式的第一个位置, 返回match对象 re.match() 在一个字符串的开始位置 ...

  7. 02-03Android学习进度报告三

    今天主要学习了线性布局和相对布局的概念和区别,以及线性布局和相对布局的优缺点. 经过搜素发现,我们屏幕适配的使用用的比较多的就是LinearLayout的权重属性weight,我 学习了一些 Line ...

  8. R语言 sample抽样函数

    Sample 函数用法: sample(x, size, replace = FALSE, prob = NULL) Arguments x - 可以是含有一个或多个元素的向量或只是一个正整数.x的长 ...

  9. winform和wpf里必知的多线程知识

    背景: 很多小伙伴经常在群里问线程的问题,平时我经常转一些视频教程这些人不看,我就自己写个总结吧 不过还是要注意的是,切换本来就不能太频繁,要一口气改. wpf的viewmodel就不需要UI线程,更 ...

  10. Python 基础之匿名函数 迭代器和高阶函数

    一.匿名函数 lambda表达式 用一句话来表达只有返回值的函数,叫匿名函数特点:简洁方便语法:lambda 参数: 返回值 1.不带有参数的lambda表达式 def func():    retu ...