Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.

Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2

Sample Output

3
Not Unique! 思路:找次小生成树,如果权值相等则不唯一,用kruskal实现次小生成树
const int maxm = ;
const int maxn = ; struct edge {
int u, v, w;
edge(int _u=-, int _v=-, int _w=):u(_u), v(_v), w(_w){}
bool operator<(const edge &a) const {
return w < a.w;
}
};
vector<edge> Edge; int fa[maxm], T, N, M, tree[maxn], k; void init() {
Edge.clear();
for(int i = ; i <= N; ++i)
fa[i] = i;
k = ;
} int Find(int x) {
if(fa[x] == x)
return x;
return fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x), y = Find(y);
if(x != y) fa[x] = y;
} int main() {
scanf("%d", &T);
while(T--) {
int t1, t2, t3, u, v;
scanf("%d%d", &N, &M);
init();
int sum = ;
for(int i = ; i < M; ++i) {
scanf("%d%d%d", &t1, &t2, &t3);
Edge.push_back(edge(t1, t2, t3));
}
sort(Edge.begin(), Edge.end());
bool flag = true;
for(int i = ; i < M; ++i) {
u = Edge[i].u, v = Edge[i].v;
u = Find(u), v = Find(v);
if(u != v) {
sum += Edge[i].w;
Union(u,v);
tree[k++] = i;
}
}
for(int i = ; i < k; ++i) {
int cnt = , edgenum = ;
for(int t = ; t <= N; ++t)
fa[t] = t;
for(int j = ; j < M; ++j) {
if(j == tree[i]) continue;
u = Edge[j].u, v = Edge[j].v;
u = Find(u), v = Find(v);
if(u != v) {
cnt += Edge[j].w;
edgenum++;
Union(u,v);
}
}
if(cnt == sum && edgenum == N - ) {
flag = false;
break;
}
}
if(flag)
printf("%d\n", sum);
else printf("Not Unique!\n");
}
return ;
}

次小生成树博客:https://www.cnblogs.com/bianjunting/p/10829212.html

https://blog.csdn.net/niushuai666/article/details/6925258

注:这里的Max数组是记录从i到j节点中边权最大值(不是和),从其父节点与新连接的边中比较

												

Day5 - G - The Unique MST POJ - 1679的更多相关文章

  1. (最小生成树 次小生成树)The Unique MST -- POJ -- 1679

    链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...

  2. The Unique MST POJ - 1679 (次小生成树)

    Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...

  3. K - The Unique MST - poj 1679

    题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...

  4. The Unique MST POJ - 1679 次小生成树prim

    求次小生成树思路: 先把最小生成树求出来  用一个Max[i][j] 数组把  i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过   把没有使用过的一条边加 ...

  5. The Unique MST POJ - 1679 最小生成树判重

    题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...

  6. poj 1679 The Unique MST

    题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...

  7. poj 1679 The Unique MST(唯一的最小生成树)

    http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  8. POJ 1679 The Unique MST(判断最小生成树是否唯一)

    题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...

  9. poj 1679 The Unique MST (判定最小生成树是否唯一)

    题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total S ...

随机推荐

  1. springmvc_ajax异步上传文件(基于ajaxfileupload.js)

    引入js <script th:src="@{/js/ajaxfileupload.js}"></script> html <tr> <t ...

  2. Airless Pump Bottle For The Rise Of Cosmetic Packaging Solutions

    Airless Pump Bottle    are used in the rise of cosmetic packaging solutions. According to the suppli ...

  3. 2020.02.28 Linux 命令

    Cat   语法格式 cat [-AbeEnstTuv] [--help] [--version] fileName 参数说明: -n 或 --number:由 1 开始对所有输出的行数编号. -b ...

  4. JAVA中final关键字的作用

    一.final关键字的功能概述 final关键字可以用来修饰引用.方法和类. 1.用来修饰一个引用 如果引用为基本数据类型,则该引用为常量,该值无法修改: 如果引用为引用数据类型,比如对象.数组,则该 ...

  5. Mayor's posters-POJ2528 区间染色+离散化

    题意: 在一面长度为10000000 的墙上贴广告,告诉你每张海报的l,r(1 <= li <= ri <= 10000000.),让你求最后有几张海报露出来 链接:http://p ...

  6. springboot下使用dubbo的简单demo

    1.一些话 现在java后端开发大多用springboot来简化环境搭建,现在一直使用的是springcloud和k8s有关的东西,以前用过dubbo,但那会儿的开发环境搭建流程较为繁琐,而且不支持r ...

  7. 在这之后的两天又出现了w3wp进程找不到的情况了

    在这之后的两天又出现了w3wp进程找不到的情况了,我做了什么操作呢?无非就是vs中给一个过程附加删除了了一些dll,然后不停的重新生成解决方案,生成成功后,要调试,发现进程又没了. 实验了上面的方法, ...

  8. i.MX RT600之DMIC外设介绍及应用

    恩智浦的i.MX RT600是跨界处理器产品,同样也是i.MX RTxxx系列的开山之作.不同于i.MX RT1xxx系列单片机,i.MX RT600 采用了双核架构,将新一代Cortex-M33内核 ...

  9. 在 aws emr 上,将 hbase table A 的数据,对 key 做 hash,写到另外一张 table B

    先 scan 原表,然后 bulkload 到新表. 采坑纪录1. bulkload 产生 hfile 前,需要先对 hash(key) 做 repartition,在 shuffle 的 read ...

  10. F: Fabulous Race Between Tortoise And Rabbit 扩展欧几里得

    http://oj.jxust.edu.cn/contest/Problem?id=1561&pid=5 题目描述 经历了上次的惨败,兔子一直心怀不满,又策划了一场比赛,但这次不再是简单的跑步 ...