Day5 - G - The Unique MST POJ - 1679
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
Output
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique! 思路:找次小生成树,如果权值相等则不唯一,用kruskal实现次小生成树
const int maxm = ;
const int maxn = ; struct edge {
int u, v, w;
edge(int _u=-, int _v=-, int _w=):u(_u), v(_v), w(_w){}
bool operator<(const edge &a) const {
return w < a.w;
}
};
vector<edge> Edge; int fa[maxm], T, N, M, tree[maxn], k; void init() {
Edge.clear();
for(int i = ; i <= N; ++i)
fa[i] = i;
k = ;
} int Find(int x) {
if(fa[x] == x)
return x;
return fa[x] = Find(fa[x]);
} void Union(int x, int y) {
x = Find(x), y = Find(y);
if(x != y) fa[x] = y;
} int main() {
scanf("%d", &T);
while(T--) {
int t1, t2, t3, u, v;
scanf("%d%d", &N, &M);
init();
int sum = ;
for(int i = ; i < M; ++i) {
scanf("%d%d%d", &t1, &t2, &t3);
Edge.push_back(edge(t1, t2, t3));
}
sort(Edge.begin(), Edge.end());
bool flag = true;
for(int i = ; i < M; ++i) {
u = Edge[i].u, v = Edge[i].v;
u = Find(u), v = Find(v);
if(u != v) {
sum += Edge[i].w;
Union(u,v);
tree[k++] = i;
}
}
for(int i = ; i < k; ++i) {
int cnt = , edgenum = ;
for(int t = ; t <= N; ++t)
fa[t] = t;
for(int j = ; j < M; ++j) {
if(j == tree[i]) continue;
u = Edge[j].u, v = Edge[j].v;
u = Find(u), v = Find(v);
if(u != v) {
cnt += Edge[j].w;
edgenum++;
Union(u,v);
}
}
if(cnt == sum && edgenum == N - ) {
flag = false;
break;
}
}
if(flag)
printf("%d\n", sum);
else printf("Not Unique!\n");
}
return ;
}
次小生成树博客:https://www.cnblogs.com/bianjunting/p/10829212.html
https://blog.csdn.net/niushuai666/article/details/6925258
注:这里的Max数组是记录从i到j节点中边权最大值(不是和),从其父节点与新连接的边中比较
Day5 - G - The Unique MST POJ - 1679的更多相关文章
- (最小生成树 次小生成树)The Unique MST -- POJ -- 1679
链接: http://poj.org/problem?id=1679 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#probl ...
- The Unique MST POJ - 1679 (次小生成树)
Given a connected undirected graph, tell if its minimum spanning tree is unique. Definition 1 (Spann ...
- K - The Unique MST - poj 1679
题目的意思已经说明了一切,次小生成树... ****************************************************************************** ...
- The Unique MST POJ - 1679 次小生成树prim
求次小生成树思路: 先把最小生成树求出来 用一个Max[i][j] 数组把 i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过 把没有使用过的一条边加 ...
- The Unique MST POJ - 1679 最小生成树判重
题意:求一个无向图的最小生成树,如果有多个最优解,输出"Not Unique!" 题解: 考虑kruskal碰到权值相同的边: 假设点3通过边(1,3)连入当前所维护的并查集s. ...
- poj 1679 The Unique MST
题目连接 http://poj.org/problem?id=1679 The Unique MST Description Given a connected undirected graph, t ...
- poj 1679 The Unique MST(唯一的最小生成树)
http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submis ...
- POJ 1679 The Unique MST(判断最小生成树是否唯一)
题目链接: http://poj.org/problem?id=1679 Description Given a connected undirected graph, tell if its min ...
- poj 1679 The Unique MST (判定最小生成树是否唯一)
题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total S ...
随机推荐
- springmvc_ajax异步上传文件(基于ajaxfileupload.js)
引入js <script th:src="@{/js/ajaxfileupload.js}"></script> html <tr> <t ...
- Airless Pump Bottle For The Rise Of Cosmetic Packaging Solutions
Airless Pump Bottle are used in the rise of cosmetic packaging solutions. According to the suppli ...
- 2020.02.28 Linux 命令
Cat 语法格式 cat [-AbeEnstTuv] [--help] [--version] fileName 参数说明: -n 或 --number:由 1 开始对所有输出的行数编号. -b ...
- JAVA中final关键字的作用
一.final关键字的功能概述 final关键字可以用来修饰引用.方法和类. 1.用来修饰一个引用 如果引用为基本数据类型,则该引用为常量,该值无法修改: 如果引用为引用数据类型,比如对象.数组,则该 ...
- Mayor's posters-POJ2528 区间染色+离散化
题意: 在一面长度为10000000 的墙上贴广告,告诉你每张海报的l,r(1 <= li <= ri <= 10000000.),让你求最后有几张海报露出来 链接:http://p ...
- springboot下使用dubbo的简单demo
1.一些话 现在java后端开发大多用springboot来简化环境搭建,现在一直使用的是springcloud和k8s有关的东西,以前用过dubbo,但那会儿的开发环境搭建流程较为繁琐,而且不支持r ...
- 在这之后的两天又出现了w3wp进程找不到的情况了
在这之后的两天又出现了w3wp进程找不到的情况了,我做了什么操作呢?无非就是vs中给一个过程附加删除了了一些dll,然后不停的重新生成解决方案,生成成功后,要调试,发现进程又没了. 实验了上面的方法, ...
- i.MX RT600之DMIC外设介绍及应用
恩智浦的i.MX RT600是跨界处理器产品,同样也是i.MX RTxxx系列的开山之作.不同于i.MX RT1xxx系列单片机,i.MX RT600 采用了双核架构,将新一代Cortex-M33内核 ...
- 在 aws emr 上,将 hbase table A 的数据,对 key 做 hash,写到另外一张 table B
先 scan 原表,然后 bulkload 到新表. 采坑纪录1. bulkload 产生 hfile 前,需要先对 hash(key) 做 repartition,在 shuffle 的 read ...
- F: Fabulous Race Between Tortoise And Rabbit 扩展欧几里得
http://oj.jxust.edu.cn/contest/Problem?id=1561&pid=5 题目描述 经历了上次的惨败,兔子一直心怀不满,又策划了一场比赛,但这次不再是简单的跑步 ...