快速排序python实现总结
背景:数据结构与算法是IT相关的工程师一直以来的基础考察重点,很多经典书籍都是用c++或者java来实现,出于对python编码效率的喜爱,于是取search了一下python的快排实现,发现大家写的都比较个性,也所以我也总结下自己理解的python快排实现。
注:本随笔注重代码实现,如果是对快速排序无任何接触的还是先看一下相关的书籍
快速排序简介:快速排序是突破O(n^2)时间复杂度上界的排序算法,其平均情况下和最好情况是的时间复杂度都是O(nlogn),最差情况下的时间复杂度为O(n^2)(最差情况下退化为选择排序),空间复杂度为O(logn)
核心思想:
核心为 partition() 函数,该函数每调用一次,会产生两个作用:
例子:待排序数组为[3,5,1,8,2,4],调用一次该函数后数组变为[2,1,3,8,5,4]
直接作用:确定待排序数组上某个位置的值(我们称这个值为枢轴);在上例中表现为确定了待排序数组中索引为2(第3个元素)的值,元素'3'即为枢轴的值
副作用:将待排序数据分为了3个部分,即 [小于等于枢轴的待排序数组]+枢轴+[大于等于枢轴的待排序数组],副作用的贡献体现在减少了分治的次数
快速排序=对待排序数组采用分治+递归的方法调用partition()函数
partition()函数的时间复杂度为O(n),分治+递归调用的平均时间复杂度为O(logn),所以总体相乘为O(nlogn)
python代码实现
第一种实现,partition借助额外的list,所以partition函数的空间复杂度为O(n),因为涉及分治+递归调用,递归使用的隐含栈需要O(logn)的时间复杂度,所以整体空间复杂度为O(nlogn),借助额外的数据结构一般会起到两个效果:1、降低时间复杂度 或者 2、提高代码可读性(易于理解),这里并没有降低时间复杂度
def quick_sort1(lst):
"""快速排序"""
def partition(lst, left, right):
#借助两个临时列表存放小于枢轴的元素和大于枢轴的元素
l_list, r_list = [], []
#选取待排序列表的最左元素作为枢轴
pivot_value = lst[left]
for i in lst[left+1:right+1]:
if i<=pivot_value:
l_list.append(i)
else:
r_list.append(i)
#因为是原地排序,所以对原待排序数组的相应元素进行替换
lst[left:right+1] = l_list+[pivot_value]+r_list
return left+len(l_list) def q_sort(lst, left, right):
"""辅助函数,便于递归调用"""
if left>=right:
return
pivot_key = partition(lst, left, right)
q_sort(lst, left, pivot_key-1)
q_sort(lst, pivot_key+1, right) if not lst or len(lst)==0:
return lst q_sort(lst, 0, len(lst)-1) return lst
上述实现采用了额外的list,虽然增加了可读性,但是提高了空间复杂度,所以,可以对其优化,将partition函数的空间复杂度降为O(1)
第二种实现,不借助额外列表
def quick_sort2(lst):
"""快速排序"""
def partition(lst, left, right):
#默认选择列表最左元素作为枢轴
pivot_value = lst[left]
while left<right:
while left<right and lst[right]>=pivot_value:
right-=1
#当右指针对应元素小于枢轴的值,将左右指针对应元素交换,使小于枢轴的值位于枢轴的左侧
lst[left], lst[right] = lst[right], lst[left]
while left<right and lst[left]<=pivot_value:
left+=1
#当左指针对应元素大于枢轴的值,将左右指针对应元素交换,使大于枢轴的值位于枢轴的右侧
lst[left], lst[right] = lst[right], lst[left]
return left def q_sort(lst, left, right):
if left>=right:
return
pivot_key = partition(lst, left, right)
q_sort(lst, left, pivot_key-1)
q_sort(lst, pivot_key+1, right) if not lst or len(lst)==0:
return lst q_sort(lst, 0, len(lst)-1) return lst
这里通过元素交换的方式达到了与方法1同样的效果,所以在很多资料上,快速排序和冒泡排序都被分类为'交换排序',但有一点要注意,快速排序最差的情况下,会退化为选择排序而非冒泡排序
针对第二种情况,我们还可以继续优化,省去不必要的交换,将"交换"优化为“替换”
第三种实现
def quick_sort3(lst):
"""快速排序"""
def partition(lst, left, right):
#默认选择列表最左元素作为枢轴,同时也记录了left最初对应的元素值
pivot_value = lst[left]
while left<right:
while left<right and lst[right]>=pivot_value:
right-=1
#将left对应的元素替换为right(小于枢轴)对应的元素
lst[left] = lst[right]
while left<right and lst[left]<=pivot_value:
left+=1
#将right对应的元素替换为left(大于枢轴)对应的元素
lst[right] = lst[left]
#当left和right相等时,使用最初记录的left对应的元素值替换当前指针的元素
lst[left] = pivot_value
#返回枢轴对应的索引
return left def q_sort(lst, left, right):
if left>=right:
return
pivot_key = partition(lst, left, right)
q_sort(lst, left, pivot_key-1)
q_sort(lst, pivot_key+1, right) if not lst or len(lst)==0:
return lst q_sort(lst, 0, len(lst)-1) return lst
第三种方案和前两种一样,都是将列表的最左元素作为枢轴,这也是导致快速排序最差情况时间复杂度为O(n^2)的原因,比如每次列表的最左元素都为最大值或者最小值,那每次对partition函数的调用只起到了直接作用(确定了列表的最左端的最小值或者最右端的最大值),而没有起到副作用(副作用的目的是减小分治次数)
所以我们可以对枢轴的选取进行优化,优化的目的是使枢轴的选取避开最大值或最小值,尽量靠近中位数,优化的思路有两种
1、随机选取
2、选取列表中left, right, (left+right)//2,三个索引位置对应元素居中的元素
由于随机数的生成在编程语言API中的实现也要耗费一定的时间复杂度,所以我们选择2
第四种实现如下
def quick_sort4(lst):
"""快速排序"""
def partition(lst, left, right):
#计算中间索引
mid = (left+right)//2
#将三个元素中大小居中的元素交换至列表的最左侧
if lst[left]>lst[mid]:
lst[left], lst[mid] = lst[mid], lst[left]
if lst[mid]>lst[right]:
lst[mid], lst[right] = lst[right], lst[mid]
if lst[left]<lst[mid]:
lst[left], lst[mid] = lst[mid],lst[left] pivot_value = lst[left]
while left<right:
while left<right and lst[right]>=pivot_value:
right-=1
lst[left] = lst[right]
while left<right and lst[left]<=pivot_value:
left+=1
lst[right] = lst[left]
lst[left] = pivot_value
return left def q_sort(lst, left, right):
if left>=right:
return
pivot_key = partition(lst, left, right)
q_sort(lst, left, pivot_key-1)
q_sort(lst, pivot_key+1, right) if not lst or len(lst)==0:
return lst q_sort(lst, 0, len(lst)-1) return lst
经过2~4的优化,我们已经
1)把空间复杂度由O(nlogn)降至O(n),yi
2)并尽量优化了最差情况下的时间复杂度,使其比O(n^2)要好一些
但需要提醒一下,其最佳情况下的时间复杂度依旧使O(nlogn),而一些简单排序算法,如插入排序和优化后的冒泡排序的最优时间复杂度都可以达到O(n)
快排在面对大量数据排序时表现良好,
所以可以进行优化,当待排序数据的元素数量小于某个常数值时采用插入排序,否则使用快速排序
第五种实现
def quick_sort5(lst):
"""快速排序"""
def partition(lst, left, right):
#计算中间索引
mid = (left+right)//2
#将三个元素中大小居中的元素交换至列表的最左侧
if lst[left]>lst[mid]:
lst[left], lst[mid] = lst[mid], lst[left]
if lst[mid]>lst[right]:
lst[mid], lst[right] = lst[right], lst[mid]
if lst[left]<lst[mid]:
lst[left], lst[mid] = lst[mid],lst[left] pivot_value = lst[left]
while left<right:
while left<right and lst[right]>=pivot_value:
right-=1
lst[left] = lst[right]
while left<right and lst[left]<=pivot_value:
left+=1
lst[right] = lst[left]
lst[left] = pivot_value
return left def q_sort(lst, left, right):
if left>=right:
return
pivot_key = partition(lst, left, right)
q_sort(lst, left, pivot_key-1)
q_sort(lst, pivot_key+1, right) if not lst or len(lst)==0:
return lst
#取某个常数,待排序元素数量大于该常数时使用快排,否则使用插入排序
if len(lst)>50:
q_sort(lst, 0, len(lst)-1)
else:
#插入排序在此不实现了,大家自行解决
insert_sort(lst) return lst
经过上述优化,我们做到了
1)空间复杂度由O(nlogn)优化至O(logn)
2) 将最差情况下的时间复杂度O(n^2)尽可能提升
3)将时间复杂度的下界提升至O(n),当然,这已经不是单纯的快排了- -!
刚开始写博客,有不对的地方还望指教~~~
快速排序python实现总结的更多相关文章
- 快速排序--Python实现
快速排序算法:1.选择一个基准数2.小于基准数的放左边,大于基准数的放右边3.利用递归的方法针对左边的数据进行快速排序,再对右边的数据进行快速排序4.递归停止的条件:数组为空或者只有一个元素 时间复杂 ...
- 快速排序python实现
#--×--coding:utf-8-*- def main(): nlist = [] while 1: tmp = raw_input("Please input your elemen ...
- 快速排序(python版)
#!coding:utf8 def quicksort(list_num, left, right): if left > right: return low = left high = rig ...
- 快速排序-python
- python数据结构与算法
最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- python实现简单排序算法
算法 递归两个特点: 调用自身 有穷调用 计算规模越来越小,直至最后结束 用装饰器修饰一个递归函数时会出现问题,这个问题产生的原因是递归的函数也不停的使用装饰器.解决方法是,只让装饰器调用一次即可,那 ...
- <算法图解>读书笔记:第4章 快速排序
第4章 快速排序 4.1 分而治之 "分而治之"( Divide and conquer)方法(又称"分治术") ,是有效算法设计中普遍采用的一种技术. 所谓& ...
- Python和Java的语法对比,语法简洁上python的确完美胜出
Python是一种广泛使用的解释型.高级编程.通用型编程语言,由吉多·范罗苏姆创造,第一版发布于1991年.可以视之为一种改良(加入一些其他编程语言的优点,如面向对象)的LISP.Python的设计哲 ...
随机推荐
- Angular开发者指南(五)服务
服务 AngularJS服务是使用依赖注入(DI)连接在一起的可替代对象. 可以使用服务在整个应用程式中整理和分享程式码. AngularJS服务有: 延迟初始化 - AngularJS只在应用程序组 ...
- struts2 标签s:select在table中单行显示
<table class="query_form_table"> <tr> <th>用户 ...
- 《Java 面试问题 一 Spring 、SpringMVC 、Mybatis》
自己理解SSM框架可能问到的面试问题 一.需要知道的SSM基础知识 1.什么是Spring? Spring 是一款轻量级的 IOC (依赖反转) 和 APO (面向切面) 容器框架.(个人理解: 就 ...
- servlet简单概括总结
最近在看java web的相关内容,不管是整体还是细节,要学习的知识有很多,所以有一个好的学习体系非常重要.在阅读学习一些博客和教程中关于servlet的内容后,现将知识体系和自己的总结体会进行梳理, ...
- Thymeleaf模板笔记
1.常用标签: 使用thymeleaf模板,首要在html中引入: <html xmlns:th="http://www.thymeleaf.org"> 引入css.j ...
- Sublime Text 2+Zen Coding
自己长期使用editplus做代码编辑,使用过DW,还是习惯前者的使用环境.好友推荐,试试新的编码工具——Sublime Text 2.在代码制作过程中,最主要的是1)快速复制的模式化工作 2)零碎 ...
- MongoDB的初级安装和使用
对于非关系型数据库,很多人不是很清楚,我也是作为新手慢慢摸索, 外网地址下载贼慢:我烦放在自己的百度网盘里 软件链接:https://pan.baidu.com/s/1A7h4VOfvm8N2gnlJ ...
- 很全很全的 JavaScript 模块讲解
模块通常是指编程语言所提供的代码组织机制,利用此机制可将程序拆解为独立且通用的代码单元.所谓模块化主要是解决代码分割.作用域隔离.模块之间的依赖管理以及发布到生产环境时的自动化打包与处理等多个方面. ...
- JSTL标签常用
JSTL简介: 标准标签库JSTL的全名为:Java Server Pages Standard Tag Library. JSTL主要提供了5大类标签库: 1. 核心标签库: 为日常任务 ...
- CSAPC08台湾邀请赛_T1_skyline
题目链接:CSAPC08台湾邀请赛_T1_skyline 题目描述 一座山的山稜线由许多片段的45度斜坡构成,每一个片段不是上坡就是下坡. / / * / / * / // / // / 在我 ...