BI报表分析和数据可视化,推荐这三个开源工具!
开源篇
一、Superset
1、技术架构:Python + Flask + React + Redux + SQLAlchemy
2、使用人群:
(1)开发/分析人员做好看板,业务人员浏览看板数据
(2)业务人员可自行编辑图表,查看满足条件的结果,但使用上对业务人员不是很友好
3、安装部署:
(1)docker方式的安装部署最简单
4、数据源:支持各种数据源,包括Hive、Kylin等
5、创建步骤:连接数据源-->定义数据表/SQL查询-->图表-->看板
6、可视化:
(1)支持的图表类型多,达47种
(2)图表可视化选项少,例如,数据格式选项偏少,如需添加,需要修改配置文件
(3)可在看板中添加筛选框,支持在不同条件下查看
(4)不支持图表和看板分组管理
(5)没有提供图表的下钻功能,不支持多图表间的复杂联动
(6)不支持跨库的表关联查询
7、支持文档:
(1)安装部署和快速入门方面的文档详细
(2)但具体功能和图表制作方面的介绍文档几乎没有,需要自己摸索尝试
8、邮件通知:不支持
9、权限管理:
(1)报表权限设置复杂、繁琐、不好用
(2)可实现对菜单、数据源、数据表、字段、图表、看板等权限控制
10、二次开发:
(1)支持 RESTful API
(2)原属Airbnb的开源项目,有大公司团队维护,版本更新、Bug修复、二次开发有较大保障。
11、源代码:代码质量较差
12、Github星数:22132
二、Redash
1、技术架构:Python + Flask + AngularJS + SQLAlchemy
2、使用人群:由于是对SQL查询结果进行可视化,需要开发/分析人员做好看板,业务人员浏览看板数据。
3、安装部署:
(1)安装部署相对较麻烦
(2)参考文档:
4、数据源:支持数据源比superset少,不支持Kylin
5、创建步骤:连接数据源-->SQL查询-->图表-->看板
6、可视化:
(1)支持的图表类型不如Superset多,仅12种
(2)图表可视化选项多
(3)不支持在看板种添加筛选框
(4)不支持图表和看板分组管理
(5)没有提供图表的下钻功能,不支持多图表间的复杂联动
(6)不支持跨库的表关联查询
7、支持文档:
(1)提供快速入门教程
(2)每一个功能模块都有文档且条理清晰
8、邮件通知:支持定时发送邮件
9、权限管理:权限设置简单,仅控制用户组对数据源的权限(只有两个权限:Full access或View only)
10、二次开发:
(1)提供完整的 RESTful API 接口
11、源代码:代码质量比Superset要好,但比Metabase差一点
12、Github星数:10891
三、Metabase
1、技术架构:Clojure + React + Redux
2、使用人群:界面漂亮、友好,使用体验好,适合业务人员使用
3、安装部署:
(1)windows下安装部署非常简单
4、数据源:支持数据源少(12种),不支持Hive、Kylin
5、创建步骤:连接数据源-->图表-->看板-->定时任务
6、可视化:
(1)支持的图表类型不如superset多,仅14种
(2)图表可视化选项多,例如,提供数据格式多,设置灵活
(3)可在看板中添加筛选框,支持在不同条件下查看
(4)通过创建集合,支持图表、看板、定时任务分组管理
(5)提供图表的简单钻取功能,不支持图表间的复杂联动
(6)不支持跨库的表关联查询
7、支持文档:
(1)安装部署、快速入门、具体功能、API等方面的文档详细
8、邮件通知:支持定时发送邮件
9、权限管理:
(1)权限设置单一,只有访问权限
(2)仅实现对数据源、数据表、图表、集合等权限控制
10、二次开发:提供完整的API文档,即使完全不会 Clojure,依然可以凭借丰富的 API 与文档完成许多二次开发。
11、源代码:代码质量最好,结构清晰,整洁度高
12、Github星数:12368
最后,几个开源BI工具的详细对比
最后,除了以上的开源BI产品(大规模推广应用还是有难度的),可以试试个人版免费的FineBI,学习文档,产品稳定性,易用性相对开源都比较成熟。
FineBI
1、技术架构:纯java开发,后台业务层spring mvc + Hibernate,前台框架fineui,底层架构引擎不明,只知道有大数据引擎。
2、使用人群:
(1)开发/数据人员准备好数据,数据人员/业务人员分析。
(2)业务人员完全可自行分析、制作可视化。整个数据分析流程分工明确。
3、安装部署:
(1)直接官网下载电脑适配的版本安装激活即可
4、数据源:支持各种数据源,支持Apache Kylin、Derby、HP Vertica、IBM DB2、Informix、Sql Server、MySQL、Oracle、Pivotal Greenplum Database、Postgresql、ADS、Amazon Redshift、Apache Impala、Apache Phoenix、Gbase 8A、Gbase8S、Gbase 8T、Hadoop Hive、Kingbase、Presto、SAP HANA、SAP Sybase、Spark、Transwarp Inceptor、Hbase等主流的一些关系型数据库及非关系数据库MongoDB等
5、创建步骤:连接数据源-->建立数据业务包-->建立分析数据表-->图表分析-->看板
6、可视化:
(1)支持的图表类型多,达47种
(2)图表可视化选项少,例如,数据格式选项偏少,如需添加,需要修改配置文件
(3)可在看板中添加筛选框,支持在不同条件下查看
(4)不支持图表和看板分组管理
(5)没有提供图表的下钻功能,不支持多图表间的复杂联动
(6)不支持跨库的表关联查询
7、支持文档:
(1)安装部署和快速入门方面的文档详细,还有教学视频
(2)但具体功能和图表制作方面的介绍文档几乎没有,需要自己摸索尝试
8、邮件通知:支持
9、权限管理:
(1)有一套完整的数据、业务包、报表、人员部门权限管理,有流程节点。
(2)可实现数据源、数据表、字段、图表、看板等权限控制
10、二次开发:
(1)不支持java层面的开发
(2)只有web接口
(3)能与.NET集成、JBPM工作流集成、CAS单点登录
11、源代码:不公开,人家商业产品,有整个团队在运营。
12、个人用户使用免费,商业部署有两个并发限制,多了就要钱了,不过相比sap这种也不贵。
BI报表分析和数据可视化,推荐这三个开源工具!的更多相关文章
- 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)
关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...
- Spark项目之电商用户行为分析大数据平台之(三)大数据集群的搭建
Zookeeper集群搭建 http://www.cnblogs.com/qingyunzong/p/8619184.html Hadoop集群搭建 http://www.cnblogs.com/qi ...
- 前端er必须掌握的数据可视化技术
又是一月结束,打工人准时准点的汇报工作如期和大家见面啦.提到汇报,必不可少的一部分就是数据的汇总.分析. 作为一名合格的社会人,我们每天都在工作.生活.学习中和数字打交道.小到量化的工作内容,大到具体 ...
- python grib气象数据可视化
基于Python的Grib数据可视化 利用Python语言实现Grib数据可视化主要依靠三个库——pygrib.numpy和matplotlib.pygrib是欧洲中期天气预报中心 ...
- 第二篇:Power BI数据可视化之基于Web数据的报表制作(经典级示例)
前言 报表制作流程的第一步显然是从各个数据源导入数据,Power BI能从很多种数据源导入数据:如Excel,CSV,XML,以及各类数据库(SQL Server,Oracle,My SQL等),两大 ...
- 推荐几款顶级的数据可视化及大数据分析BI工具
如今,有大量强大的可视化工具可用于表达想法.可视化数据.向客户和全球社区分享重要的分析结果.现在大大小小的企业都可以利用商业智能工具来理解复杂的大数据. 这些解决方案可以收集,分析这些数据并将其转换为 ...
- 手把手教你快速使用数据可视化BI软件创建全球经济贸易分析大屏
灯果数据可视化BI软件是新一代人工智能数据可视化大屏软件,内置丰富的大屏模板,可视化编辑操作,无需任何经验就可以创建属于你自己的大屏.大家可以在他们的官网下载软件. 本文以全球经济贸易分析大屏为例 ...
- 数据可视化之PowerQuery篇(十一)使用Power BI进行动态帕累托分析
https://zhuanlan.zhihu.com/p/57763423 上篇文章介绍了帕累托图的用处以及如何制作一个简单的帕累托图,在 PowerBI 中可以很方便的生成,但若仅止于此,并不足以体 ...
- 第一篇:Power BI数据可视化概述
前言 "可视化之工具,可爱者甚蕃.统计学家独爱R,自Python来,世人盛爱matplotlib.余独爱Power BI之出微软而不染(免费),濯Office而不妖(够精简).......& ...
随机推荐
- OpenCV-Python 特征匹配 + 单应性查找对象 | 四十五
目标 在本章节中,我们将把calib3d模块中的特征匹配和findHomography混合在一起,以在复杂图像中找到已知对象. 基础 那么我们在上一环节上做了什么?我们使用了queryImage,找到 ...
- OpenCV-Python 图像阈值 | 十五
目标 在本教程中,您将学习简单阈值,自适应阈值和Otsu阈值. 你将学习函数cv.threshold和cv.adaptiveThreshold. 简单阈值 在这里,问题直截了当.对于每个像素,应用相同 ...
- Sublimeの虚拟环境(Venv)设置
这里主要介绍,在使用 Python 虚拟环境(Venv)时,SublimeText 该怎么设置 为什么使用虚拟环境(Venv) 因为,我有洁癖! 我就是喜欢看到,pip list 命令下什么 Pack ...
- Java 学习笔记 第一章:Java语言开发环境搭建
第一章:Java语言开发环境搭建 第二章:常量.变量和数据类型 第三章:数据类型转换.运算符和方法入门 1.Java虚拟机——JVM JVM(Java Virtual Machine ):Java虚拟 ...
- iOS 编译过程原理(1)
一.前言 一般可以将编程语言分为两种,编译语言和直译式语言. 像 C++.Objective-C 都是编译语言.编译语言在执行的时候,必须先通过编译器生成机器码,机器码可以直接在 CPU 上执行,所以 ...
- Java 数组 字符 函数
一. 1. package Hello; import java.util.Scanner; public class hello_test { public static void main(Str ...
- SpringApplication对象是如何构建的? SpringBoot源码(八)
注:该源码分析对应SpringBoot版本为2.1.0.RELEASE 本篇接 SpringBoot的启动流程是怎样的?SpringBoot源码(七) 1 温故而知新 温故而知新,我们来简单回顾一下上 ...
- CSS3+CSS+HTML实现网页
效果图: 代码实现: 样式部分style.css: *{ margin:; padding:; } body{ background-color: #673929; font-size: 16px; ...
- 使用 Visual Studio 开发、测试和部署 Azure Functions(一)开发
1,什么是Azure functions Azure Functions 是 Microsoft Azure 提供的完全托管的 PaaS 服务,用于实现无服务器体系结构. Azure Function ...
- HBase 监控 | HBase Metrics 初探(一)
前言:对于任意一个系统而言,做好监控都是非常重要的,HBase也不例外.经常,我们会从JMX中获取相关指标来做展示.对HBase进行监控,那这些指标是怎么生成的呢?如果你想自定义自己的监控指标又该怎么 ...