tensorflow1.0 构建神经网络做图片分类
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data",one_hot=True) def add_layer(inputs,in_size,out_size,activation_function=None):
Weight = tf.Variable(tf.random_normal([in_size,out_size]))
biases = tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b = tf.matmul(inputs,Weight)+biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs def compute_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs})
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
return result xs = tf.placeholder(tf.float32,[None,784]) #28*28
ys = tf.placeholder(tf.float32,[None,10]) l1 = add_layer(xs,784,128,activation_function=tf.nn.tanh)
prediction = add_layer(l1,128,10,activation_function=tf.nn.softmax) cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session()
sess.run(tf.initialize_all_variables()) for i in range(3000):
batch_xs,batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i %50 ==0:
print(compute_accuracy(mnist.test.images,mnist.test.labels))
tensorflow1.0 构建神经网络做图片分类的更多相关文章
- tensorflow1.0 构建lstm做图片分类
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #this is data mni ...
- tensorflow1.0 构建神经网络做非线性归回
""" Please note, this code is only for python 3+. If you are using python 2+, please ...
- 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别
这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...
- tensorflow1.0 构建卷积神经网络
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os os.envi ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 深度学习之神经网络核心原理与算法-caffe&keras框架图片分类
之前我们在使用cnn做图片分类的时候使用了CIFAR-10数据集 其他框架对于CIFAR-10的图片分类是怎么做的 来与TensorFlow做对比. Caffe Keras 安装 官方安装文档: ht ...
- 5分钟Serverless实践:构建无服务器的图片分类系统
前言 在过去“5分钟Serverless实践”系列文章中,我们介绍了如何构建无服务器API和Web应用,从本质上来说,它们都属于基于APIG触发器对外提供一个无服务器API的场景.现在本文将介绍一种新 ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- 第二十二节,TensorFlow中的图片分类模型库slim的使用、数据集处理
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦 ...
随机推荐
- 多伦多大学&NVIDIA最新成果:图像标注速度提升10倍!
图像标注速度提升10倍! 这是多伦多大学与英伟达联合公布的一项最新研究:Curve-GCN的应用结果. Curve-GCN是一种高效交互式图像标注方法,其性能优于Polygon-RNN++.在自动模式 ...
- Cygwin工具编译Ardupilot方法
注意:该编译方法生成的固件基于Chibios系统,如果想要Nuttx系统固件,需采用make编译,步骤见make编译说明部分. 软件安装准备 安装Cygwin 打开链接www.cygwin.com/i ...
- IBN-Net: 提升模型的域自适应性
本文解读内容是IBN-Net, 笔者最初是在很多行人重识别的库中频繁遇到比如ResNet-ibn这样的模型,所以产生了阅读并研究这篇文章的兴趣,文章全称是: <Two at Once: Enha ...
- C++中的map
c++中的map类型变量不能为const类型 示例 struct INST{ string name; string type; string func; }; map<string, INST ...
- ajax2.0之拖拽上传
index.html <!DOCTYPE html> <html> <head> <meta charset="utf-8"> &l ...
- DHCP完整过程详解及Wireshark抓包分析
DHCP,Dynamic Host Configuration Protocol,动态主机配置协议,简单来说就是主机获取IP地址的过程,属于应用层协议. DHCP采用UDP的68(客户端)和67(服务 ...
- 理解 Hanoi 汉诺塔非递归算法
汉诺塔介绍: 汉诺塔(港台:河内塔)是根据一个传说形成的数学问题: 最早发明这个问题的人是法国数学家爱德华·卢卡斯. 传说越南河内某间寺院有三根银棒,上串 64 个金盘.寺院里的僧侣依照一个古老的预言 ...
- .NET Core项目部署到Linux(Centos7)(九)防火墙配置,允许外网或局域网访问.NET Core站点
目录 1.前言 2.环境和软件的准备 3.创建.NET Core API项目 4.VMware Workstation虚拟机及Centos 7安装 5.Centos 7安装.NET Core环境 6. ...
- docker+nginx 微信支付回调
制作微信支付发现回调有问题: docker-compose中接口要映射对应地址 然后再进行访问
- String 对象-->split() 方法
1.定义和用法 split() 方法用于把一个字符串分割成字符串数组. 语法: string.split(separator,limit) 参数: separator:可选.字符串或正则表达式,从该参 ...