CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)
Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month).
Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year.
Nastya owns x dresses now, so she became interested in the expected number of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for k + 1 months.
Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109 + 7, because it is easy to see that it is always integer.
Input
The only line contains two integers x and k (0 ≤ x, k ≤ 1018), where x is the initial number of dresses and k + 1 is the number of months in a year in Byteland.
Output
In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109 + 7.
Examples
Input
2 0
Output
4
Input
2 1
Output
7
Input
3 2
Output
21
Note
In the first example a year consists on only one month, so the wardrobe does not eat dresses at all.
In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.
这个题画个图就能看出来,如果不考虑最后一天则,前面是个连续的序列。那么最后要求和取平均的过程,换成等差数列求和再取平均。然后化简完就是(2∗a−1)2b+1(2*a-1)2^{b}+1(2∗a−1)2b+1,害怕快速幂超时,可以十进制快速幂,也可以欧拉降幂。
#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
t f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *= f;
}
#define wi(n) printf("%d ", n)
#define wl(n) printf("%lld ", n)
#define rep(m, n, i) for (int i = m; i < n; ++i)
#define rrep(m, n, i) for (int i = m; i > n; --i)
#define P puts(" ")
typedef long long ll;
#define MOD 1000000007
#define mp(a, b) make_pair(a, b)
#define N 10005
#define fil(a, n) rep(0, n, i) read(a[i])
//---------------https://lunatic.blog.csdn.net/-------------------//
const ll phi = 1000000006; //1e9+7的欧拉函数
ll fast_pow(ll a, ll b, ll p)
{
ll ret = 1;
for (; b; b >>= 1, a = a * a % p)
if (b & 1)
ret = ret * a % p;
return ret;
}
int main()
{
ll a, b,c;
read(a), read(b);
if (b >= phi)
b = b % phi + phi; //欧拉降幂
ll s1 = fast_pow(2, b, MOD);
cout<<((((2*a)%MOD-1)*s1)+1+MOD)%MOD<<endl;
}
CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)的更多相关文章
- CodeForces 992C Nastya and a Wardrobe(规律、快速幂)
http://codeforces.com/problemset/problem/992/C 题意: 给你两个数x,k,k代表有k+1个月,x每个月可以增长一倍,增长后的下一个月开始时x有50%几率减 ...
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)
题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...
- Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...
- codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...
- CodeForces 906D (欧拉降幂)
Power Tower •题意 求$w_{l}^{w_{l+1}^{w_{l+2}^{w_{l+3}^{w_{l+4}^{w_{l+5}^{...^{w_{r}}}}}}}}$ 对m取模的值 •思路 ...
- Codeforces 992C Nastya and a Wardrobe (思维)
<题目链接> 题目大意: 你开始有X个裙子 你有K+1次增长机会 前K次会100%的增长一倍 但是增长后有50%的机会会减少一个 给你X,K(0<=X,K<=1e18), 问你 ...
- Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...
随机推荐
- (29)ASP.NET Core3.1 Swagger(OpenAPI)
1.什么是Swagger/OpenAPI? Swagger是一个与语言无关的规范,用于描述REST API.因为Swagger项目已捐赠给OpenAPI计划,所以也叫OpenAPI.它允许计算机和人员 ...
- JavaScript中||和&&的运算
一般来讲 && 运算和 | | 运算得到的结果都是 true 和 false ,但是 js 中的有点不太一样.当进行 a&&b 和 a| |b (如 1&&am ...
- C语言atoi函数
目录 1.包含头文件 2.函数声明 3.功能说明 4.示例 5.其它说明 6.版权声明 C语言提供了一系列函数把字符串转换为整数:atoi.atol.atoll和atoq. 1.包含头文件 #incl ...
- Go gRPC教程-客户端流式RPC(四)
前言 上一篇介绍了服务端流式RPC,客户端发送请求到服务器,拿到一个流去读取返回的消息序列. 客户端读取返回的流的数据.本篇将介绍客户端流式RPC. 客户端流式RPC:与服务端流式RPC相反,客户端不 ...
- Centos 7 系统定时重启
crontab -e //系统命令 00 08 * * * root systemctl restart docker00 08 * * * root reboot //写入需要重启的 ...
- PHPStorm IDE 快捷键
⌘——Command ⌃ ——Control ⌥——Option/Alt ⇧——Shift ⇪——Caps Lock fn——功能键就是fn编辑 Command+alt+T 用 (if..else, ...
- 【FreeMarker】【程序开发】数据模型,对象包装
[FreeMarker][程序开发]数据模型,对象包装 分类: Java.FreeMarker2014-10-25 18:49 413人阅读 评论(0) 收藏 举报 FreeMarker 目录(? ...
- 文件上传——客户端检测绕过(JavaScript检测)(一)
前言 通常再一个web程序中,一般会存在登陆注册功能,登陆后一般会有上传头像等功能,如果上传验证不严格就可能造成攻击者直接上传木马,进而控制整个web业务控制权.下面通过实例,如果程序只进行了客户端J ...
- SpringCloud-服务注册中心「Eureka」的介绍与使用
Eureka 两大组件
- A - Wireless Network POJ - 2236
题目大意:有n台坏掉的电脑,给出每台电脑的坐标,然后每次询问输入0(字符) x,表示电脑x恢复正常,输入S x y 询问x和y是否可以联网.只要是x和y的距离小于距离d,那么就可以联网,如果有个中介c ...