Problem Description

Conflicts are everywhere in the world, from the young to the elderly, from families to countries. Conflicts cause quarrels, fights or even wars. How wonderful the world will be if all conflicts can be eliminated.

Edward contributes his lifetime to invent a 'Conflict Resolution Terminal' and he has finally succeeded. This magic item has the ability to eliminate all the conflicts. It works like this:

If any two people have conflict, they should simply put their hands into the 'Conflict Resolution Terminal' (which is simply a plastic tube). Then they play 'Rock, Paper and Scissors' in it. After they have decided what they will play, the tube should be opened and no one will have the chance to change. Finally, the winner have the right to rule and the loser should obey it. Conflict Eliminated!

But the game is not that fair, because people may be following some patterns when they play, and if the pattern is founded by others, the others will win definitely.

Alice and Bob always have conflicts with each other so they use the 'Conflict Resolution Terminal' a lot. Sadly for Bob, Alice found his pattern and can predict how Bob plays precisely. She is very kind that doesn't want to take advantage of that. So she tells Bob about it and they come up with a new way of eliminate the conflict:

They will play the 'Rock, Paper and Scissors' for N round. Bob will set up some restricts on Alice.

But the restrict can only be in the form of "you must play the same (or different) on the ith and jth rounds". If Alice loses in any round or break any of the rules she loses, otherwise she wins.

Will Alice have a chance to win?

Input

The first line contains an integer T(1 <= T <= 50), indicating the number of test cases.

Each test case contains several lines.

The first line contains two integers N,M(1 <= N <= 10000, 1 <= M <= 10000), representing how many round they will play and how many restricts are there for Alice.

The next line contains N integers B1,B2, ...,BN, where Bi represents what item Bob will play in the ith round. 1 represents Rock, 2 represents Paper, 3 represents Scissors.

The following M lines each contains three integers A,B,K(1 <= A,B <= N,K = 0 or 1) represent a restrict for Alice. If K equals 0, Alice must play the same on Ath and Bth round. If K equals 1, she must play different items on Ath and Bthround.

Output

For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is "yes" or "no" represents whether Alice has a chance to win.

Sample Input

2 3 3 1 1 1 1 2 1 1 3 1 2 3 1 5 5 1 2 3 2 1 1 2 1 1 3 1 1 4 1 1 5 1 2 3 0

Sample Output

Case #1: no Case #2: yes

Hint

'Rock, Paper and Scissors' is a game which played by two person. They should play Rock, Paper or Scissors by their hands at the same time. Rock defeats scissors, scissors defeats paper and paper defeats rock. If two people play the same item, the game is tied..

题意:

A和B两个人要用 N局“石头布剪刀”的游戏来决定胜负,现在给出A在每一轮游戏选择的手势(1表示石头,2表示布,3表示剪刀)。另外A给B设置了M个如a b k的限制,当k = 0时,要求B在第a局游戏和第b局游戏出的手势必须一样;当 k = 1时,要求B在第a局游戏和第b局游戏出的手势不能一样。对于B来说,输掉任意一局 或者 违反规则都是他输,反之他赢。这也就意味着在A和B全平局(每局出的手势一样)的情况下,是B赢。问你B有没有机会获胜。

分析:

因为Alice已经知道Bob的所有出拳,所以用a[maxn][2]数组保存那些出拳的结果。然后对于下面的要求作出Alice在第i轮选0还是选1的推断即可。看看是否有方法满足本2-SAT的n个解。

因为Alice一次都不能输,所以根据Bob出的拳,Alice只可以赢或者平局,即每次有两种选择,是2-SAT模型

然后会有一些矛盾对,假设第a次可以出a1,a2, 第b次可以出b1和b2

如果第a次和b次要求相同, 但是a1和b1不同,说明这个矛盾,建立连接 a1—>b2, b1—>a2.(a1与b1不同时最多有4种可能的情况需要考虑)

同理,第a次和b次要求不相同,但是a1和b2相同,说明这个矛盾,建立链接a1—>b1,  b2—>a2

……

然后用2-SAT判断即可.

#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <stack>
#include <algorithm>
#define MAXN 60000+100
#define MAXM 200000+10
#define INF 100000000
using namespace std;
struct Edge
{
int from, to, next;
};
Edge edge[MAXM];
int head[MAXN], edgenum;
int low[MAXN], dfn[MAXN];
int dfs_clock;
int sccno[MAXN], scc_cnt;
stack<int> S;
bool Instack[MAXN];
int N, M;//N局游戏 M个限制
int TT = 1;
void init()
{
edgenum = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v)
{
Edge E = {u, v, head[u]};
edge[edgenum] = E;
head[u] = edgenum++;
}
void getMap()
{
int a, b, k;
for(int i = 1; i <= N; i++)
{
scanf("%d", &k);
switch(k)
{
//对手出石头
case 1: //在第i局出布 或者 出石头
addEdge(i + 4 * N, i);//不出布 就必须出石头
addEdge(i + 3 * N, i + N);//不出石头 就必须出布
break;
//对手出布
case 2: //在第i局出剪刀 或者 出布
addEdge(i + 5 * N, i + N);//不出剪刀 就必须出布
addEdge(i + 4 * N, i + 2 * N);//不出布 就必须出剪刀
break;
//对手出剪刀
case 3: //在第i局出石头 或者 出剪刀
addEdge(i + 3 * N, i + 2 * N);//不出石头 就必须出剪刀
addEdge(i + 5 * N, i);//不出剪刀 就必须出石头
break;
}
}
//每局只能出一个
for(int i = 1; i <= N; i++)
{
//出了石头就不能出其他的
addEdge(i, i + 4 * N);
addEdge(i, i + 5 * N);
//出了布 就不能出其他的
addEdge(i + N, i + 3 * N);
addEdge(i + N, i + 5 * N);
//出了剪刀 就不能出其他的
addEdge(i + 2 * N, i + 3 * N);
addEdge(i + 2 * N, i + 4 * N);
}
while(M--)
{
scanf("%d%d%d", &a, &b, &k);
if(k == 1)//a局和b局不同
{
addEdge(a, b + 3 * N);//a局出石头 b局一定不能出石头
addEdge(b, a + 3 * N);//b局出石头 a局一定不能出石头
addEdge(a + N, b + 4 * N);//a局出布 b局一定不能出布
addEdge(b + N, a + 4 * N);//a局出布 b局一定不能出布
addEdge(a + 2 * N, b + 5 * N);//a局出剪刀 b局一定不能出剪刀
addEdge(b + 2 * N, a + 5 * N);//b局出剪刀 a局一定不能出剪刀
}
else//a局和b局一样
{
addEdge(a, b);//a局出石头 b局也出石头
addEdge(b, a);//b局出石头 a局也出石头
addEdge(a + N, b + N);//a局出布 b局也出布
addEdge(b + N, a + N);//b局出布 a局也出布
addEdge(a + 2 * N, b + 2 * N);//a局出剪刀 b局也出剪刀
addEdge(b + 2 * N, a + 2 * N);//b局出剪刀 a局也出剪刀
}
}
}
void tarjan(int u, int fa)
{
int v;
low[u] = dfn[u] = ++dfs_clock;
S.push(u);
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u])
{
scc_cnt++;
for(;;)
{
v = S.top(); S.pop();
Instack[v] = false;
sccno[v] = scc_cnt;
if(v == u) break;
}
}
}
void find_cut(int l, int r)
{
memset(low, 0, sizeof(low));
memset(dfn, 0, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(Instack, false, sizeof(Instack));
dfs_clock = scc_cnt = 0;
for(int i = l; i <= r; i++)
if(!dfn[i]) tarjan(i, -1);
}
void solve()
{
printf("Case #%d: ", TT++);
for(int i = 1; i <= 3 * N; i++)
{
if(sccno[i] == sccno[i + 3 * N])
{
printf("no\n");
return ;
}
}
printf("yes\n");
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &N, &M);
init();
getMap();
find_cut(1, 6 * N);
solve();
}
return 0;
}

图论--2-SAT--HDU/HDOJ 4115 Eliminate the Conflict的更多相关文章

  1. HDU 4115 Eliminate the Conflict(2-sat)

    HDU 4115 Eliminate the Conflict pid=4115">题目链接 题意:Alice和Bob这对狗男女在玩剪刀石头布.已知Bob每轮要出什么,然后Bob给Al ...

  2. hdu 4115 Eliminate the Conflict ( 2-sat )

    Eliminate the Conflict Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  3. HDU 4115 Eliminate the Conflict(2-SAT)(2011 Asia ChengDu Regional Contest)

    Problem Description Conflicts are everywhere in the world, from the young to the elderly, from famil ...

  4. 图论--差分约束--HDU\HDOJ 4109 Instrction Arrangement

    Problem Description Ali has taken the Computer Organization and Architecture course this term. He le ...

  5. HDU 4115 Eliminate the Conflict

    2-SAT,拆成六个点. #include<cstdio> #include<cstring> #include<cmath> #include<stack& ...

  6. hdu4115 Eliminate the Conflict

    Eliminate the Conflict Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...

  7. Eliminate the Conflict HDU - 4115(2-sat 建图 hhh)

    题意: 石头剪刀布 分别为1.2.3,有n轮,给出了小A这n轮出什么,然后m行,每行三个数a b k,如果k为0 表示小B必须在第a轮和第b轮的策略一样,如果k为1 表示小B在第a轮和第b轮的策略不一 ...

  8. 图论问题(2) : hdu 1102

    题目转自hdu 1102,题目传送门 题目大意: 输入一个n*n的邻接矩阵,其中i行j列代表从i到j的路径的长度 然后又m条路已经帮你修好了,求最短要修多长的路才能使所有村庄连接 不难看出,这道题就是 ...

  9. HDU/HDOJ 2612 Find a way 双向BFS

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2612 思路:从两个起点出发,有多个终点,求从两个起点同时能到达的终点具有的最小时间,开两个数组分别保存 ...

随机推荐

  1. 分治算法(C++版)

    #include<iostream>using namespace std;  void printArray(int array[],int length)  {      for (i ...

  2. Python 类属性和方法

    import types class Dog(object): __slots__ = ("name", "color", "info") ...

  3. Javascript 入门 必备知识点

    1.如何得到html的input标签的值: (1). $('#id').val(); (2). $("#id").attr("value"); 2.javasc ...

  4. P1352 没有上司的舞会&&树形DP入门

    https://www.luogu.com.cn/problem/P1352 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的 ...

  5. 数据结构和算法(Golang实现)(7)简单入门Golang-标准库

    使用标准库 一.避免重复造轮子 官方提供了很多库给我们用,是封装好的轮子,比如包fmt,我们多次使用它来打印数据. 我们可以查看到其里面的实现: package fmt func Println(a ...

  6. java实现图片的上传和展示

    一.注意事项: 1,该项目主要采用的是springboot+thymeleaf框架 2,代码展示的为ajax完成图片上传(如果不用ajax只需要改变相应的form表单配置即可) 二.效果实现: 1,页 ...

  7. AJ学IOS(18)UI之QQ聊天布局_键盘通知实现自动弹出隐藏_自动回复

    AJ分享,必须精品 先看图片 第一步完成tableView和Cell的架子的图 完善图片 键盘弹出设置后图片: 自动回复图: 粗狂的架子 tableView和Cell的创建 首相tableView为了 ...

  8. Jmeter命令行执行并生成HTML报告

    前提:准备好jmeter脚本,找到jmeter配置文件查看生成的日志格式是否为csv,如果不是请改为csv 注意:使用命令执行jmeter脚本必须使用jmeter 3.0及以上版本1.使用命令行执行脚 ...

  9. .NET Core 发布时去掉多余的语言包文件夹

    用 .NET Core 3.x 作为目标框架时发布完之后,会发现多了很多语言包文件夹,类似于: 有时候,不想要生成这些语言包文件夹,需要稍微配置一下. 在 PropertyGroup 节点中添加如下的 ...

  10. 基于spring的安全管理框架-Spring Security

    什么是spring security? spring security是基于spring的安全框架.它提供全面的安全性解决方案,同时在Web请求级别和调用级别确认和授权.在Spring Framewo ...