【Hadoop离线基础总结】MapReduce自定义InputFormat和OutputFormat案例
MapReduce自定义InputFormat和OutputFormat案例
自定义InputFormat 合并小文件
需求
无论hdfs还是mapreduce,存放小文件会占用元数据信息,白白浪费内存,实践中,又难免面临处理大量小文件的场景优化小文件的三种方式
1.在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS
2.在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并
3.在mapreduce处理时,可采用combineInputFormat提高效率用代码实现第二种方式
自定义InputFormat
package cn.itcast.demo3;
import jdk.nashorn.internal.ir.Splittable;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import java.io.IOException;
import java.util.List;
public class MyInputFormat extends FileInputFormat<NullWritable, BytesWritable> {
@Override
public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
MyRecordReader myRecordReader = new MyRecordReader();
myRecordReader.initialize(split, context);
return myRecordReader;
}
/**
* 表示我们的文件是否可切分
* 返回false表示我们的文件不可切分,读取文件时会一次性将文件内容全部读取出来
*
* @param context
* @param filename
* @return
*/
@Override
protected boolean isSplitable(JobContext context, Path filename) {
return false;
}
}
自定义RecordReader
package cn.itcast.demo3;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
import java.io.InputStream;
public class MyRecordReader extends RecordReader<NullWritable, BytesWritable> {
//定义文件切片
private FileSplit fileSplit;
//定义文件configuration
private Configuration configuration;
//定义v2
private BytesWritable bytesWritable = new BytesWritable();
//定义下面nextKeyValue返回值为false
private boolean nextKeyValue = false;
/**
* 初始化方法
* 这里可以拿到文件切片,也就意味着可以拿到文件,将文件转换为字节数组
*
* @param split
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
//获取文件切片
this.fileSplit = (FileSplit) split;
//获取文件Configuration
this.configuration = context.getConfiguration();
}
/**
* 返回true,表示文件读取完成,不会再往下继续读取文件
* 返回false,表示会继续往下读取文件
*
* @return
* @throws IOException
* @throws InterruptedException
*/
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (!nextKeyValue) {
//根据文件的切片,将文件的内容全部读取出来,封装到BytesWritable中
byte[] fileContent = new byte[(int) fileSplit.getLength()];
//获取文件切片路径
Path path = fileSplit.getPath();
//获取文件系统
FileSystem fileSystem = path.getFileSystem(configuration);
//打开文件输入流
FSDataInputStream inputStream = fileSystem.open(path);
//将输入流转到字节数组中
IOUtils.readFully(inputStream, fileContent, 0, (int) fileSplit.getLength());
bytesWritable.set(fileContent, 0, fileContent.length);
//将读取文件的标识设置为true,表示文件已经读取完成,不需要继续读取
nextKeyValue = true;
IOUtils.closeStream(inputStream);
return nextKeyValue;
}
return false;
}
/**
* 用来返回k1的值
*
* @return
* @throws IOException
* @throws InterruptedException
*/
@Override
public NullWritable getCurrentKey() throws IOException, InterruptedException {
return NullWritable.get();
}
/**
* 用来返回v1的值
*
* @return
* @throws IOException
* @throws InterruptedException
*/
@Override
public BytesWritable getCurrentValue() throws IOException, InterruptedException {
return bytesWritable;
}
/**
* 不太需要注意,就是用来读取运行进度的
*
* @return
* @throws IOException
* @throws InterruptedException
*/
@Override
public float getProgress() throws IOException, InterruptedException {
return nextKeyValue ? 1.0F : 0.0F;
}
/**
* 用来读取完后释放资源的,了解即可
*
* @throws IOException
*/
@Override
public void close() throws IOException {
}
}
定义一个Mapper类
package cn.itcast.demo3;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
public class MyMapperInput extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
@Override
protected void map(NullWritable key, BytesWritable value, Context context) throws IOException, InterruptedException {
//获取文件切片
FileSplit inputSplit = (FileSplit) context.getInputSplit();
//获取文件名称
String name = inputSplit.getPath().getName();
//输出k2,v2
context.write(new Text(name), value);
}
}
程序main函数入口
package cn.itcast.demo3;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class OwnInputFormatMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "ownInputFormat");
//输入数据,设置输入路径,注意这里是自动以的InputFormat
job.setInputFormatClass(MyInputFormat.class);
MyInputFormat.addInputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义inputformat_小文件合并/input"));
//自定义map逻辑
job.setMapperClass(MyMapperInput.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(BytesWritable.class);
//虽然没有reducer,但是不设置reduce输出类型,默认的是<LongWritable,Text>
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);
//输出数据,设置输出路径
job.setOutputFormatClass(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setOutputPath(job,new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义inputformat_小文件合并/sequence_output"));
//提交任务到集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new OwnInputFormatMain(), args);
System.exit(run);
}
}
自定义OutputFormat 将一个文件中的数据分发到不同文件
需求
将订单的好评与差评区分开来,并将最终的数据发送到不同的文件夹下面去,其中数据第九个字段表示好评,中评,差评。0:好评,1:中评,2:差评代码实现
自定义OutputFormat
package cn.itcast.demo4;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class MyOutputFormat extends FileOutputFormat<Text, NullWritable> {
@Override
public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {
//从这个方法里就可以获取一个configuration
Configuration configuration = context.getConfiguration();
//获取文件系统
FileSystem fileSystem = FileSystem.get(configuration);
//设置好评文件的输出路径
Path goodComment = new Path("/Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义outputformat/myGoodComment/1.txt");
//设置差评文件的输出路径
Path badComment = new Path("/Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义outputformat/myBadComment/1.txt");
//获取文件输出流
FSDataOutputStream fsDataOutputStream = fileSystem.create(goodComment);
FSDataOutputStream fsDataOutputStream1 = fileSystem.create(badComment);
MyRecordWriter myRecordWriter = new MyRecordWriter(fsDataOutputStream, fsDataOutputStream1);
return myRecordWriter;
}
}
自定义RecordWriter
package cn.itcast.demo4;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import java.io.IOException;
public class MyRecordWriter extends RecordWriter<Text, NullWritable> {
//使用无参和带参构造调用goodStream和badStream
private FSDataOutputStream goodStream;
private FSDataOutputStream badStream;
public MyRecordWriter() {
}
public MyRecordWriter(FSDataOutputStream goodStream, FSDataOutputStream badStream) {
this.goodStream = goodStream;
this.badStream = badStream;
}
/**
* 这个write方法就是往外写出去数据
*
* @param key 可以根据这个key,来判断文件究竟往哪个目录下写
* @param value
* @throws IOException
* @throws InterruptedException
*/
@Override
public void write(Text key, NullWritable value) throws IOException, InterruptedException {
//分割导入的数据
String[] split = key.toString().split("\t");
//获取评论状态 0:好评 1:中评 2:差评;
//判断评论状态,如果小于等于1则写到好评文件中,否则写到差评文件中
if (Integer.parseInt(split[9]) <= 1) {
goodStream.write(key.toString().getBytes());
goodStream.write("\r\n".getBytes());
} else {
badStream.write(key.toString().getBytes());
badStream.write("\r\n".getBytes());
}
}
@Override
public void close(TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {
IOUtils.closeStream(goodStream);
IOUtils.closeStream(badStream);
}
}
定义一个Mapper类
package cn.itcast.demo4;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class MyOutputMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value, NullWritable.get());
}
}
程序main函数入口
package cn.itcast.demo4;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MyOutputMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
//创建job对象
Job job = Job.getInstance(super.getConf(), "OutputFormat");
//输入数据,设置输入路径
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义outputformat/input/ordercomment.csv"));
//自定义map逻辑
job.setMapperClass(MyOutputMapper.class);
//设置k2,v2输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
//输出数据,设置输出路径,这里的输出路径不是真正的输出路径
job.setOutputFormatClass(MyOutputFormat.class);
MyOutputFormat.setOutputPath(job, new Path("file:////Volumes/赵壮备份/大数据离线课程资料/5.大数据离线第五天/自定义outputformat/output"));
//提交任务至集群
boolean b = job.waitForCompletion(true);
return b ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new MyOutputMain(), args);
System.exit(run);
}
}
【Hadoop离线基础总结】MapReduce自定义InputFormat和OutputFormat案例的更多相关文章
- MapReduce自定义InputFormat和OutputFormat
一.自定义InputFormat 需求:将多个小文件合并为SequenceFile(存储了多个小文件) 存储格式:文件路径+文件的内容 c:/a.txt I love Beijing c:/b.txt ...
- 自定义InputFormat和OutputFormat案例
一.自定义InputFormat InputFormat是输入流,在前面的例子中使用的是文件输入输出流FileInputFormat和FileOutputFormat,而FileInputFormat ...
- 【Hadoop离线基础总结】Hue的简单介绍和安装部署
目录 Hue的简单介绍 概述 核心功能 安装部署 下载Hue的压缩包并上传到linux解压 编译安装启动 启动Hue进程 hue与其他框架的集成 Hue与Hadoop集成 Hue与Hive集成 Hue ...
- 【Hadoop离线基础总结】oozie的安装部署与使用
目录 简单介绍 概述 架构 安装部署 1.修改core-site.xml 2.上传oozie的安装包并解压 3.解压hadooplibs到与oozie平行的目录 4.创建libext目录,并拷贝依赖包 ...
- 【Hadoop离线基础总结】impala简单介绍及安装部署
目录 impala的简单介绍 概述 优点 缺点 impala和Hive的关系 impala如何和CDH一起工作 impala的架构及查询计划 impala/hive/spark 对比 impala的安 ...
- 【Hadoop离线基础总结】Hive调优手段
Hive调优手段 最常用的调优手段 Fetch抓取 MapJoin 分区裁剪 列裁剪 控制map个数以及reduce个数 JVM重用 数据压缩 Fetch的抓取 出现原因 Hive中对某些情况的查询不 ...
- 【Hadoop离线基础总结】流量日志分析网站整体架构模块开发
目录 数据仓库设计 维度建模概述 维度建模的三种模式 本项目中数据仓库的设计 ETL开发 创建ODS层数据表 导入ODS层数据 生成ODS层明细宽表 统计分析开发 流量分析 受访分析 访客visit分 ...
- 【Hadoop离线基础总结】Sqoop常用命令及参数
目录 常用命令 常用公用参数 公用参数:数据库连接 公用参数:import 公用参数:export 公用参数:hive 常用命令&参数 从关系表导入--import 导出到关系表--expor ...
- 【Hadoop离线基础总结】Sqoop数据迁移
目录 Sqoop介绍 概述 版本 Sqoop安装及使用 Sqoop安装 Sqoop数据导入 导入关系表到Hive已有表中 导入关系表到Hive(自动创建Hive表) 将关系表子集导入到HDFS中 sq ...
随机推荐
- Daily Scrum 12/16/2015
Process: Dong&Minlong : 继续对Oxford Speech 接口进行调试,并且完成了相应工作的转接. Yandong@Zhaoyang: 完成了对一些Bug的修复工作,程 ...
- Java 14 来势汹汹,这回让空指针无处遁形!!
上篇:Java 14 之模式匹配,非常赞的一个新特性! 相信在坐的每一位 Java 程序员都遇到过空指针异常: NullPointerException(NPE),不甚其烦. 栈长之前也分享几篇避免空 ...
- 移植seetafaceengine-master、opencv到ARM板
0.前言 在要移植opecv和SeetaFaceEngine-master到ARM板子上运行的所有步骤之前,有几点需要注意的: 查看板子运行的Kernel版本 交叉编译工具链的gcc版本,关键就是工具 ...
- Redis学习与应用-位图
什么是位图 位图bitmap是通过一个bit来表示某个元素对应的值或者状态,是由一组bit位组成,每个bit位对应0和1两个状态,虽然内部还是采用string类型进行存储,但是redis提供了直接操作 ...
- Python网络爬虫:伪装浏览器
一.添加超时跳过功能 首先, 我简单地将 urlop = urllib.request.urlopen(url) 改为 urlop = urllib.request.urlopen(url, time ...
- 批量查询PDF文本并导出结果的小工具
效果: 批量查询指定关键字 & 指定目录下PDF文件中的文本,并导出文件路径和关键字所在文本行. 下载: 链接: https://pan.baidu.com/s/1sK2OMMgGX26l7P ...
- JQ获取select上的option的data-start和data-id
来源:https://zhidao.baidu.com/question/692142321436883524.html 静态的写法: 用jq的attr()函数,如: HTML: <select ...
- 单源最短路问题--朴素Dijkstra & 堆优化Dijkstra
许久没有写博客,更新一下~ Dijkstra两种典型写法 1. 朴素Dijkstra 时间复杂度O(N^2) 适用:稠密图(点较少,分布密集) #include <cstdi ...
- 使用@vue/cli搭建vue项目开发环境
当前系统版本 mac OS 10.14.2 1.安装node.js开发环境 前端开发框架和环境都是需要 Node.js vue的运行是要依赖于node的npm的管理工具来实现 <mac OS ...
- react 工程起步 安装chrome 开发调试工具 react developer tools 及初建一个react 项目...
1.安装react 开发工具 1.下载 chrome react developer tools 下载地址:https://pan.baidu.com/s/1eSZsXDC 下载好是 ...