Spark读取Hbase中的数据
大家可能都知道很熟悉Spark的两种常见的数据读取方式(存放到RDD中):(1)、调用parallelize函数直接从集合中获取数据,并存入RDD中;Java版本如下:
JavaRDD<Integer> myRDD = sc.parallelize(Arrays.asList( 1 , 2 , 3 )); |
Scala版本如下:
val myRDD= sc.parallelize(List( 1 , 2 , 3 )) |
这种方式很简单,很容易就可以将一个集合中的数据变成RDD的初始化值;更常见的是(2)、从文本中读取数据到RDD中,这个文本可以是纯文本文件、可以是sequence文件;可以存放在本地(file://)、可以存放在HDFS(hdfs://)上,还可以存放在S3上。其实对文件来说,Spark支持Hadoop所支持的所有文件类型和文件存放位置。Java版如下:
///////////////////////////////////////////////////////////////////// User: 过往记忆 Date: 14 - 6 - 29 Time: 23 : 59 bolg: 本文地址:/archives/ 1051 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货 过往记忆博客微信公共帐号:iteblog_hadoop ///////////////////////////////////////////////////////////////////// import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; SparkConf conf = new SparkConf().setAppName( "Simple Application" ); JavaSparkContext sc = new JavaSparkContext(conf); sc.addFile( "wyp.data" ); JavaRDD<String> lines = sc.textFile(SparkFiles.get( "wyp.data" )); |
Scala版本如下:
import org.apache.spark.SparkContext import org.apache.spark.SparkConf val conf = new SparkConf().setAppName( "Simple Application" ) val sc = new SparkContext(conf) sc.addFile( "spam.data" ) val inFile = sc.textFile(SparkFiles.get( "spam.data" )) |
在实际情况下,我们需要的数据可能不是简单的存放在HDFS文本中,我们需要的数据可能就存放在Hbase中,那么我们如何用Spark来读取Hbase中的数据呢?本文的所有测试是基于Hadoop 2.2.0、Hbase 0.98.2、Spark 0.9.1,不同版本可能代码的编写有点不同。本文只是简单地用Spark来读取Hbase中的数据,如果需要对Hbase进行更强的操作,本文可能不能帮你。话不多说,Spark操作Hbase的Java版本代码如下:
package com.iteblog.spark; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableInputFormat;
import org.apache.hadoop.hbase.protobuf.ProtobufUtil;
import org.apache.hadoop.hbase.protobuf.generated.ClientProtos;
import org.apache.hadoop.hbase.util.Base64;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Serializable;
import scala.Tuple2; import java.io.IOException;
import java.util.List; /**
* User: iteblog
* Date: 14-6-27
* Time: 下午5:18
*blog: http://www.iteblog.com
*
* Usage: bin/spark-submit --master yarn-cluster --class com.iteblog.spark.SparkFromHbase
* --jars /home/q/hbase/hbase-0.96.0-hadoop2/lib/htrace-core-2.01.jar,
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-common-0.96.0-hadoop2.jar,
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-client-0.96.0-hadoop2.jar,
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-protocol-0.96.0-hadoop2.jar,
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-server-0.96.0-hadoop2.jar
* ./spark_2.10-1.0.jar
*/
public class SparkFromHbase implements Serializable { /**
* copy from org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil
*
* @param scan
* @return
* @throws IOException
*/
String convertScanToString(Scan scan) throws IOException {
ClientProtos.Scan proto = ProtobufUtil.toScan(scan);
return Base64.encodeBytes(proto.toByteArray());
} public void start() {
SparkConf sparkConf = new SparkConf();
JavaSparkContext sc = new JavaSparkContext(sparkConf); Configuration conf = HBaseConfiguration.create(); Scan scan = new Scan();
//scan.setStartRow(Bytes.toBytes("195861-1035177490"));
//scan.setStopRow(Bytes.toBytes("195861-1072173147"));
scan.addFamily(Bytes.toBytes("cf"));
scan.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("col_1")); try { String tableName = "wyp";
conf.set(TableInputFormat.INPUT_TABLE, tableName);
conf.set(TableInputFormat.SCAN, convertScanToString(scan)); JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD = sc.newAPIHadoopRDD(conf,
TableInputFormat.class, ImmutableBytesWritable.class,
Result.class); JavaPairRDD<String, Integer> levels = hBaseRDD.mapToPair(
new PairFunction<Tuple2<ImmutableBytesWritable, Result>, String, Integer>() {
@Override
public Tuple2<String, Integer> call(Tuple2<ImmutableBytesWritable, Result> immutableBytesWritableResultTuple2) throws Exception {
byte[] o = immutableBytesWritableResultTuple2._2().getValue(Bytes.toBytes("cf"), Bytes.toBytes("col_1"));
if (o != null) {
return new Tuple2<String, Integer>(new String(o), 1);
}
return null;
}
}); JavaPairRDD<String, Integer> counts = levels.reduceByKey(
new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2 tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());
} sc.stop(); } catch (Exception e) {
e.printStackTrace();
}
} public static void main(String[] args) throws InterruptedException {
new SparkFromHbase().start();
System.exit(0);
}
}
这样本段代码段是从Hbase表名为flight_wap_order_log的数据库中读取cf列簇上的airName一列的数据,这样我们就可以对myRDD进行相应的操作:
System.out.println(myRDD.count()); |
本段代码需要在pom.xml文件加入以下依赖:
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2. 10 </artifactId> <version> 0.9 . 1 </version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase</artifactId> <version> 0.98 . 2 -hadoop2</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version> 0.98 . 2 -hadoop2</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-common</artifactId> <version> 0.98 . 2 -hadoop2</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version> 0.98 . 2 -hadoop2</version> </dependency> |
Scala版如下:
import org.apache.spark._ import org.apache.spark.rdd.NewHadoopRDD import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor} import org.apache.hadoop.hbase.client.HBaseAdmin import org.apache.hadoop.hbase.mapreduce.TableInputFormat ///////////////////////////////////////////////////////////////////// User: 过往记忆 Date: 14 - 6 - 29 Time: 23 : 59 bolg: 本文地址:/archives/ 1051 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货 过往记忆博客微信公共帐号:iteblog_hadoop ///////////////////////////////////////////////////////////////////// object HBaseTest { def main(args: Array[String]) { val sc = new SparkContext(args( 0 ), "HBaseTest" , System.getenv( "SPARK_HOME" ), SparkContext.jarOfClass( this .getClass)) val conf = HBaseConfiguration.create() conf.set(TableInputFormat.INPUT_TABLE, args( 1 )) val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat], classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable], classOf[org.apache.hadoop.hbase.client.Result]) hBaseRDD.count() System.exit( 0 ) } } |
我们需要在加入如下依赖:
libraryDependencies ++= Seq( "org.apache.spark" % "spark-core_2.10" % "0.9.1" , "org.apache.hbase" % "hbase" % "0.98.2-hadoop2" , "org.apache.hbase" % "hbase-client" % "0.98.2-hadoop2" , "org.apache.hbase" % "hbase-common" % "0.98.2-hadoop2" , "org.apache.hbase" % "hbase-server" % "0.98.2-hadoop2" ) |
在测试的时候,需要配置好Hbase、Hadoop环境,否则程序会出现问题,特别是让程序找到Hbase-site.xml配置文件。
package com.iteblog.spark; | |
import org.apache.hadoop.conf.Configuration; | |
import org.apache.hadoop.hbase.HBaseConfiguration; | |
import org.apache.hadoop.hbase.client.Result; | |
import org.apache.hadoop.hbase.client.Scan; | |
import org.apache.hadoop.hbase.io.ImmutableBytesWritable; | |
import org.apache.hadoop.hbase.mapreduce.TableInputFormat; | |
import org.apache.hadoop.hbase.protobuf.ProtobufUtil; | |
import org.apache.hadoop.hbase.protobuf.generated.ClientProtos; | |
import org.apache.hadoop.hbase.util.Base64; | |
import org.apache.hadoop.hbase.util.Bytes; | |
import org.apache.spark.SparkConf; | |
import org.apache.spark.api.java.JavaPairRDD; | |
import org.apache.spark.api.java.JavaSparkContext; | |
import org.apache.spark.api.java.function.Function2; | |
import org.apache.spark.api.java.function.PairFunction; | |
import scala.Serializable; | |
import scala.Tuple2; | |
import java.io.IOException; | |
import java.util.List; | |
/** | |
* User: iteblog | |
* Date: 14-6-27 | |
* Time: 下午5:18 | |
*blog: http://www.iteblog.com | |
* | |
* Usage: bin/spark-submit --master yarn-cluster --class com.iteblog.spark.SparkFromHbase | |
* --jars /home/q/hbase/hbase-0.96.0-hadoop2/lib/htrace-core-2.01.jar, | |
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-common-0.96.0-hadoop2.jar, | |
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-client-0.96.0-hadoop2.jar, | |
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-protocol-0.96.0-hadoop2.jar, | |
* /home/q/hbase/hbase-0.96.0-hadoop2/lib/hbase-server-0.96.0-hadoop2.jar | |
* ./spark_2.10-1.0.jar | |
*/ | |
public class SparkFromHbase implements Serializable { | |
/** | |
* copy from org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil | |
* | |
* @param scan | |
* @return | |
* @throws IOException | |
*/ | |
String convertScanToString(Scan scan) throws IOException { | |
ClientProtos.Scan proto = ProtobufUtil.toScan(scan); | |
return Base64.encodeBytes(proto.toByteArray()); | |
} | |
public void start() { | |
SparkConf sparkConf = new SparkConf(); | |
JavaSparkContext sc = new JavaSparkContext(sparkConf); | |
Configuration conf = HBaseConfiguration.create(); | |
Scan scan = new Scan(); | |
//scan.setStartRow(Bytes.toBytes("195861-1035177490")); | |
//scan.setStopRow(Bytes.toBytes("195861-1072173147")); | |
scan.addFamily(Bytes.toBytes("cf")); | |
scan.addColumn(Bytes.toBytes("cf"), Bytes.toBytes("col_1")); | |
try { | |
String tableName = "wyp"; | |
conf.set(TableInputFormat.INPUT_TABLE, tableName); | |
conf.set(TableInputFormat.SCAN, convertScanToString(scan)); | |
JavaPairRDD<ImmutableBytesWritable, Result> hBaseRDD = sc.newAPIHadoopRDD(conf, | |
TableInputFormat.class, ImmutableBytesWritable.class, | |
Result.class); | |
JavaPairRDD<String, Integer> levels = hBaseRDD.mapToPair( | |
new PairFunction<Tuple2<ImmutableBytesWritable, Result>, String, Integer>() { | |
@Override | |
public Tuple2<String, Integer> call(Tuple2<ImmutableBytesWritable, Result> immutableBytesWritableResultTuple2) throws Exception { | |
byte[] o = immutableBytesWritableResultTuple2._2().getValue(Bytes.toBytes("cf"), Bytes.toBytes("col_1")); | |
if (o != null) { | |
return new Tuple2<String, Integer>(new String(o), 1); | |
} | |
return null; | |
} | |
}); | |
JavaPairRDD<String, Integer> counts = levels.reduceByKey( | |
new Function2<Integer, Integer, Integer>() { | |
@Override | |
public Integer call(Integer i1, Integer i2) { | |
return i1 + i2; | |
} | |
}); | |
List<Tuple2<String, Integer>> output = counts.collect(); | |
for (Tuple2 tuple : output) { | |
System.out.println(tuple._1() + ": " + tuple._2()); | |
} | |
sc.stop(); | |
} catch (Exception e) { | |
e.printStackTrace(); | |
} | |
} | |
public static void main(String[] args) throws InterruptedException { | |
new SparkFromHbase().start(); | |
System.exit(0); | |
} | |
} |
Spark读取Hbase中的数据的更多相关文章
- IDEA中Spark读Hbase中的数据
import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.io.ImmutableBytesWr ...
- IDEA中Spark往Hbase中写数据
import org.apache.hadoop.hbase.HBaseConfiguration import org.apache.hadoop.hbase.io.ImmutableBytesWr ...
- Spark 读取HBase和SolrCloud数据
Spark1.6.2读取SolrCloud 5.5.1 //httpmime-4.4.1.jar // solr-solrj-5.5.1.jar //spark-solr-2.2.2-20161007 ...
- Spark读写Hbase中的数据
def main(args: Array[String]) { val sparkConf = new SparkConf().setMaster("local").setAppN ...
- 用Spark向HBase中插入数据
java代码如下: package db.insert; import java.util.Iterator; import java.util.StringTokenizer; import org ...
- 使用Hive或Impala执行SQL语句,对存储在HBase中的数据操作
CSSDesk body { background-color: #2574b0; } /*! zybuluo */ article,aside,details,figcaption,figure,f ...
- Spark读取HDFS中的Zip文件
1. 任务背景 近日有个项目任务,要求读取压缩在Zip中的百科HTML文件,经分析发现,提供的Zip文件有如下特点(=>指代对应解决方案): (1) 压缩为分卷文件 => 只需将解压缩在同 ...
- Python中如何读取xls中的数据
要想读取EXCEL中的数据,首先得下载xlrd包,地址:https://pypi.python.org/pypi/xlrd 安装方法:下载解压后,利用windows dos命令进入解压目录eg,c ...
- 编写SqlHelper使用,在将ExecuteReader方法封装进而读取数据库中的数据时会产生Additional information: 阅读器关闭时尝试调用 Read 无效问题,解决方法与解释
在自学杨中科老师的视频教学时,拓展编写SqlHelper使用,在将ExecuteReader方法封装进而读取数据库中的数据时 会产生Additional information: 阅读器关闭时尝试调用 ...
随机推荐
- 全局设置UITableView的属性|正确计算contentSize|MJRefresh mj_footer 能正常隐藏在底部,不因为数据过少展示在页面中部
可在AppDelegate中设置 if (@available(iOS 11.0, *)) { UITableView.appearance.estimatedRowHeight = 0; UITab ...
- poj3613 求经过n条边的最短路 ----矩阵玩出新高度 。
For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race usin ...
- 手把手教你Windows Linux双系统的安装与卸载
作者:-叶丶知秋 链接:https://blog.csdn.net/fanxueya1322/article/details/90205143 转载请保留出处 良许前言: 后台突然有很多小伙伴留言想看 ...
- h5中嵌入视频自动播放的问题
在H5页面中嵌入视频的情况是比较多件的,有时候会碰到需要自动播放的情况,之前根本觉得这不是问题,但是自己的项目中需要视频的时候就有点sb了,达不到老板的要求,那个急呀~~~ 各种查资料,找到一个方法, ...
- Codeforces Round #646 (Div. 2)【C. Game On Leaves 题解】
题意分析 关于这道题,意思就是两个人摘叶子,谁最后摘到编号为x的谁就赢了.既然是叶子,说明其最多只有一个分支,由于题目上说了是无向图,那就是度数小于等于的节点.也就是一步步移除度数小于等于的节点,直到 ...
- ThreadLocal Thread ThreadLocalMap 之间的关系
ThreadLocal :每个线程通过此对象都会返回各自的值,互不干扰,这是因为每个线程都存着自己的一份副本.需要注意的是线程结束后,它所保存的所有副本都将进行垃圾回收(除非存在对这些副本的其他引用) ...
- URL跳转与钓鱼
从登录页跳转到另一个页面就叫做URL跳转. 1.URL跳转 URL跳转一般分为两种,(1)客户端跳转:(2)服务端跳转.对用户来说,两种跳转都是透明的,都是指向或者跳转到另一个页面,页面发生了改变.但 ...
- 高性能可扩展mysql 笔记(二)用户模型设计、用户实体表结构设计、设计范式
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一.用户模型设计 电商羡慕中用户模型的设计涉及以下几个部分: 以电商平台京东的登录.注册页面作为例: ...
- Java实现 LeetCode 825 适龄的朋友(暴力)
825. 适龄的朋友 人们会互相发送好友请求,现在给定一个包含有他们年龄的数组,ages[i] 表示第 i 个人的年龄. 当满足以下条件时,A 不能给 B(A.B不为同一人)发送好友请求: age[B ...
- Java实现 蓝桥杯 算法提高 上帝造题五分钟
算法提高 上帝造题五分钟 时间限制:1.0s 内存限制:256.0MB 问题描述 第一分钟,上帝说:要有题.于是就有了L,Y,M,C 第二分钟,LYC说:要有向量.于是就有了长度为n写满随机整数的向量 ...