这是上上次对抗赛的题目了

其实现在发现整个代码从头到尾,都是用了背包,怪我们背包没深入学好。

比赛的时候,聪哥提出的一种思路是,预处理一下,背包出 ALL攻击 和 single攻击的 血量对应的最小花费,其实这些都没什么问题。。。主要是后面的问题,后面为了找到如何使用ALL攻击是最好的,我们是这样处理的,对怪物血量 升序排序,然后枚举,从哪个点开始,该点前面的怪物都用ALL杀死,后面的怪物都用single杀死,因为血高的放在后面多承受几次ALL攻击应该是最优的,这样看起来好像是对的。。也过了样例,就是WA了。。。。其实WA的很明显,我们居然三个人都没想到,刚刚重新敲这道题才发现这个策略大错特错了,我们这样枚举,很明显,没有计算,用了ALL攻击,但是没有杀死怪物的情况,也许这些就是最优解。。我们的策略,要么就不用ALL攻击,用了ALL攻击就一定要把怪物杀死。。。肯定有问题啊。

后来还是参考的别人的比较好的思路,前面的处理是一样的,不过换了一下,背包出 两种攻击 的 花费 对应的 最大攻击,即 下标是 花费,值是攻击力,这样便于后面的处理。

背包完之后,从0开始往上枚举 出 使用ALL的花费情况,然后就得到ALL的攻击总量,再遍历一遍怪物,就可以得到剩余血量用single攻击的花费,全部加起来就是可能的结果,全部枚举完就能求出最优解

刚刚还和聪哥讨论了好久,为什么枚举ALL花费情况就可以得到所有合理的ALL攻击组合,这其实就是利用了背包的特性,即,我给你一个上限,就能帮我求出这个上限中的最优组合,就是利用了背包的特性。。。所以我为什么说这整个题目就是一个背包题,全部都在利用背包的特性。。怪我没有对背包理解透彻,这种隐藏的可以枚举花费,通过背包得到组合情况没有想到。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 110010
using namespace std;
int hp[]; struct weapon{
int c,p;
}all[],sig[];
int dp[][N];
int all_num,sig_num;
int m,n;
void init()
{
all_num=sig_num=;
}
void proc()
{
memset(dp,,sizeof dp);
for (int i=;i<all_num;i++){
for (int j=all[i].c;j<N;j++){
dp[][j]=max(dp[][j],dp[][j-all[i].c]+all[i].p);
}
}
for (int i=;i<sig_num;i++){
for (int j=sig[i].c;j<N;j++){
dp[][j]=max(dp[][j],dp[][j-sig[i].c]+sig[i].p);
}
}
}
int bs(int val)
{
int l=,r=N-,mid;
while (l<r)
{
mid=(l+r)>>;
if (dp[][mid]<val) l=mid+;
else r=mid;
}
return l; }
int main()
{
char ch[],cc[];
int a,b;
while (scanf("%d",&n)){
if (!n) break;
init();
for (int i=;i<n;i++) scanf("%d",&hp[i]);
scanf("%d",&m);
bool flag=false;
for (int i=;i<m;i++){
scanf("%s %d %s %d",ch,&a,cc,&b);
// cout<<a<<" "<<b<<endl;
if (cc[]=='A') all[all_num++]=(weapon){a,b};
if (cc[]=='S') sig[sig_num++]=(weapon){a,b};
if (a== && b>) flag=;
}
if (flag) {puts("");continue;}
proc();
int ans=N*;
for (int i=;i<ans;i++){
int temp=i;
for (int j=;j<n;j++){
temp+=bs(hp[j]-dp[][i]);
}
ans=min(ans,temp);
}
printf("%d\n",ans);
}
return ;
}

Aizu 2155 Magic Slayer 背包DP的更多相关文章

  1. HDU 5119 Happy Matt Friends (背包DP + 滚动数组)

    题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...

  2. Codeforces 922 E Birds (背包dp)被define坑了的一题

    网页链接:点击打开链接 Apart from plush toys, Imp is a huge fan of little yellow birds! To summon birds, Imp ne ...

  3. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  4. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  7. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  8. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. redis5.5官方文档

    https://www.cnblogs.com/zsl-find/articles/11780974.html 博客 https://redis.io/topics/cluster-tutorial ...

  2. js左右选项移动

    <!--网页代码--><div class="modal" id="modal-primary7"> <div class=&qu ...

  3. firewalld学习-zone

    原文地址:http://www.excelib.com/article/290/show firewalld默认提供了九个zone配置文件: block.xml.dmz.xml.drop.xml.ex ...

  4. Redis原理详解

    Redis原理详解 数据类型 Redis最为常用的数据类型主要有以下五种: String Hash List Set Sorted set 在具体描述这几种数据类型之前,我们先通过一张图了解下Redi ...

  5. Typescript 实战 --- (9)ES6与CommonJS的模块系统

    1.ES6模块系统 1-1.export 导出 (1).单独导出 // a.ts export let a = 1; (2).批量导出 // a.ts let b = 2; let c = 3; ex ...

  6. 011、MySQL取14天前Unix时间戳

    #取14天前时间戳 SELECT unix_timestamp( DATE_SUB( curdate( ), INTERVAL DAY ) ); 效果如下: 不忘初心,如果您认为这篇文章有价值,认同作 ...

  7. setTimeout的异步

    http://www.cnblogs.com/littledu/articles/2607211.html http://www.cnblogs.com/rubylouvre/archive/2009 ...

  8. Java 文件

    章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...

  9. C语言中可变参数的原理——printf()函数

    函数原型: int printf(const char *format[,argument]...) 返 回 值: 成功则返回实际输出的字符数,失败返回-1. 函数说明: 使用过C语言的人所再熟悉不过 ...

  10. s5pc100开发板Nand flash移植

    相关软件下载地址:http://pan.baidu.com/s/16yo8Y fsc100开发板 交叉编译工具:arm-cortex_a8-linux-gnueabi-gcc Ÿ   添加针对我们平台 ...