这是上上次对抗赛的题目了

其实现在发现整个代码从头到尾,都是用了背包,怪我们背包没深入学好。

比赛的时候,聪哥提出的一种思路是,预处理一下,背包出 ALL攻击 和 single攻击的 血量对应的最小花费,其实这些都没什么问题。。。主要是后面的问题,后面为了找到如何使用ALL攻击是最好的,我们是这样处理的,对怪物血量 升序排序,然后枚举,从哪个点开始,该点前面的怪物都用ALL杀死,后面的怪物都用single杀死,因为血高的放在后面多承受几次ALL攻击应该是最优的,这样看起来好像是对的。。也过了样例,就是WA了。。。。其实WA的很明显,我们居然三个人都没想到,刚刚重新敲这道题才发现这个策略大错特错了,我们这样枚举,很明显,没有计算,用了ALL攻击,但是没有杀死怪物的情况,也许这些就是最优解。。我们的策略,要么就不用ALL攻击,用了ALL攻击就一定要把怪物杀死。。。肯定有问题啊。

后来还是参考的别人的比较好的思路,前面的处理是一样的,不过换了一下,背包出 两种攻击 的 花费 对应的 最大攻击,即 下标是 花费,值是攻击力,这样便于后面的处理。

背包完之后,从0开始往上枚举 出 使用ALL的花费情况,然后就得到ALL的攻击总量,再遍历一遍怪物,就可以得到剩余血量用single攻击的花费,全部加起来就是可能的结果,全部枚举完就能求出最优解

刚刚还和聪哥讨论了好久,为什么枚举ALL花费情况就可以得到所有合理的ALL攻击组合,这其实就是利用了背包的特性,即,我给你一个上限,就能帮我求出这个上限中的最优组合,就是利用了背包的特性。。。所以我为什么说这整个题目就是一个背包题,全部都在利用背包的特性。。怪我没有对背包理解透彻,这种隐藏的可以枚举花费,通过背包得到组合情况没有想到。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 110010
using namespace std;
int hp[]; struct weapon{
int c,p;
}all[],sig[];
int dp[][N];
int all_num,sig_num;
int m,n;
void init()
{
all_num=sig_num=;
}
void proc()
{
memset(dp,,sizeof dp);
for (int i=;i<all_num;i++){
for (int j=all[i].c;j<N;j++){
dp[][j]=max(dp[][j],dp[][j-all[i].c]+all[i].p);
}
}
for (int i=;i<sig_num;i++){
for (int j=sig[i].c;j<N;j++){
dp[][j]=max(dp[][j],dp[][j-sig[i].c]+sig[i].p);
}
}
}
int bs(int val)
{
int l=,r=N-,mid;
while (l<r)
{
mid=(l+r)>>;
if (dp[][mid]<val) l=mid+;
else r=mid;
}
return l; }
int main()
{
char ch[],cc[];
int a,b;
while (scanf("%d",&n)){
if (!n) break;
init();
for (int i=;i<n;i++) scanf("%d",&hp[i]);
scanf("%d",&m);
bool flag=false;
for (int i=;i<m;i++){
scanf("%s %d %s %d",ch,&a,cc,&b);
// cout<<a<<" "<<b<<endl;
if (cc[]=='A') all[all_num++]=(weapon){a,b};
if (cc[]=='S') sig[sig_num++]=(weapon){a,b};
if (a== && b>) flag=;
}
if (flag) {puts("");continue;}
proc();
int ans=N*;
for (int i=;i<ans;i++){
int temp=i;
for (int j=;j<n;j++){
temp+=bs(hp[j]-dp[][i]);
}
ans=min(ans,temp);
}
printf("%d\n",ans);
}
return ;
}

Aizu 2155 Magic Slayer 背包DP的更多相关文章

  1. HDU 5119 Happy Matt Friends (背包DP + 滚动数组)

    题目链接:HDU 5119 Problem Description Matt has N friends. They are playing a game together. Each of Matt ...

  2. Codeforces 922 E Birds (背包dp)被define坑了的一题

    网页链接:点击打开链接 Apart from plush toys, Imp is a huge fan of little yellow birds! To summon birds, Imp ne ...

  3. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  4. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  5. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  7. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  8. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  9. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

随机推荐

  1. Java图形与文本(18)

    实例018  旋转图形 实例说明 本实例演示在Java中绘制图形时,如何对图形进行旋转.运行程序,单击窗体上的“顺时针”按钮,可以将图形顺时针旋转,效果如图1.18所示,用户还可以通过单击“逆时针”和 ...

  2. ubuntu 环境下pycharm的 安装与激活教程

    1. 基本安装: 1.1 打开Ubuntu的应用市场,并在搜索栏搜索pycharm,结果如下图所示 1.2 选择pro版本进行安装,结果如下图所示: 1.3打开安装后的pycharm,如果出现下图所示 ...

  3. Adapter之GridAdapter

    前言: 在我们写界面的时候想让我们展示的页面是网格的,这是我们可以使用GridAdapter,这个和listView的使用有相似之处,如果学过ListView的话还是很简单的 正文: 下面我们来看看G ...

  4. Spring Boot 核心注解与配置文件

    @SpringBootApplication注解 Spring Boot项目有一个入口类 (*Application) 在这个类中有一个main 方法,是运行该项目的切入点.而@SpringBootA ...

  5. 51nod 1391:01串

    1391 01串 题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 给定一个01串S,求出它的一个尽可能长的子串S[i. ...

  6. vue 【 子子组件 => 子组件 => 父组件 】 的事件和参数的传递

    1,子子组件  TodoItem.vue     <template>   <div class="todo-item" :class="{'is-co ...

  7. Redis详解(六)——哨兵机制

    Redis详解(六)--哨兵机制 一.概述 Redis Sentinel是一个分布式系统,为Redis提供高可用性解决方案.可以在一个架构中运行多个 Sentinel 进程(progress), 这些 ...

  8. python重要函数eval

    1.参数会作为一个 Python 表达式(从技术上说是一个条件列表)被解析并求值 >>> x = 1 >>> eval('x+1') 2 2.去除字符串两边的引号 ...

  9. [PHP] php作为websocket的客户端实时读取推送日志文件

    首先要使用composer来下载一个第三方扩展就可以实现php的websocket客户端,直接在当前目录生成下composer.json文件就可以了composer require textalk/w ...

  10. mysql8 my.ini

    [mysqld] ; 设置3306端口 port= ; 设置mysql的安装目录 basedir=D:/wamp64/bin/mysql/mysql8.0.11 ; 设置mysql数据库的数据的存放目 ...