吴裕雄--天生自然 R语言开发学习:广义线性模型(续一)
#----------------------------------------------#
# R in Action (2nd ed): Chapter 13 #
# Generalized linear models #
# requires packages AER, robust, gcc #
# install.packages(c("AER", "robust", "gcc")) #
#----------------------------------------------# ## Logistic Regression # get summary statistics
data(Affairs, package="AER")
summary(Affairs)
table(Affairs$affairs) # create binary outcome variable
Affairs$ynaffair[Affairs$affairs > 0] <- 1
Affairs$ynaffair[Affairs$affairs == 0] <- 0
Affairs$ynaffair <- factor(Affairs$ynaffair,
levels=c(0,1),
labels=c("No","Yes"))
table(Affairs$ynaffair) # fit full model
fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children +
religiousness + education + occupation +rating,
data=Affairs,family=binomial())
summary(fit.full) # fit reduced model
fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, data=Affairs, family=binomial())
summary(fit.reduced) # compare models
anova(fit.reduced, fit.full, test="Chisq") # interpret coefficients
coef(fit.reduced)
exp(coef(fit.reduced)) # calculate probability of extramariatal affair by marital ratings
testdata <- data.frame(rating = c(1, 2, 3, 4, 5),
age = mean(Affairs$age),
yearsmarried = mean(Affairs$yearsmarried),
religiousness = mean(Affairs$religiousness))
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata # calculate probabilites of extramariatal affair by age
testdata <- data.frame(rating = mean(Affairs$rating),
age = seq(17, 57, 10),
yearsmarried = mean(Affairs$yearsmarried),
religiousness = mean(Affairs$religiousness))
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata # evaluate overdispersion
fit <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, family = binomial(), data = Affairs)
fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, family = quasibinomial(), data = Affairs)
pchisq(summary(fit.od)$dispersion * fit$df.residual,
fit$df.residual, lower = F) ## Poisson Regression # look at dataset
data(breslow.dat, package="robust")
names(breslow.dat)
summary(breslow.dat[c(6, 7, 8, 10)]) # plot distribution of post-treatment seizure counts
opar <- par(no.readonly=TRUE)
par(mfrow=c(1, 2))
attach(breslow.dat)
hist(sumY, breaks=20, xlab="Seizure Count",
main="Distribution of Seizures")
boxplot(sumY ~ Trt, xlab="Treatment", main="Group Comparisons")
par(opar) # fit regression
fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
summary(fit) # interpret model parameters
coef(fit)
exp(coef(fit)) # evaluate overdispersion
deviance(fit)/df.residual(fit)
library(qcc)
qcc.overdispersion.test(breslow.dat$sumY, type="poisson") # fit model with quasipoisson
fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
family=quasipoisson())
summary(fit.od)
吴裕雄--天生自然 R语言开发学习:广义线性模型(续一)的更多相关文章
- 吴裕雄--天生自然 R语言开发学习:R语言的安装与配置
下载R语言和开发工具RStudio安装包 先安装R
- 吴裕雄--天生自然 R语言开发学习:数据集和数据结构
数据集的概念 数据集通常是由数据构成的一个矩形数组,行表示观测,列表示变量.表2-1提供了一个假想的病例数据集. 不同的行业对于数据集的行和列叫法不同.统计学家称它们为观测(observation)和 ...
- 吴裕雄--天生自然 R语言开发学习:导入数据
2.3.6 导入 SPSS 数据 IBM SPSS数据集可以通过foreign包中的函数read.spss()导入到R中,也可以使用Hmisc 包中的spss.get()函数.函数spss.get() ...
- 吴裕雄--天生自然 R语言开发学习:使用键盘、带分隔符的文本文件输入数据
R可从键盘.文本文件.Microsoft Excel和Access.流行的统计软件.特殊格 式的文件.多种关系型数据库管理系统.专业数据库.网站和在线服务中导入数据. 使用键盘了.有两种常见的方式:用 ...
- 吴裕雄--天生自然 R语言开发学习:R语言的简单介绍和使用
假设我们正在研究生理发育问 题,并收集了10名婴儿在出生后一年内的月龄和体重数据(见表1-).我们感兴趣的是体重的分 布及体重和月龄的关系. 可以使用函数c()以向量的形式输入月龄和体重数据,此函 数 ...
- 吴裕雄--天生自然 R语言开发学习:基础知识
1.基础数据结构 1.1 向量 # 创建向量a a <- c(1,2,3) print(a) 1.2 矩阵 #创建矩阵 mymat <- matrix(c(1:10), nrow=2, n ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续二)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶(续一)
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:图形初阶
# ----------------------------------------------------# # R in Action (2nd ed): Chapter 3 # # Gettin ...
- 吴裕雄--天生自然 R语言开发学习:基本图形(续二)
#---------------------------------------------------------------# # R in Action (2nd ed): Chapter 6 ...
随机推荐
- nvm安装教程
nvm是一个nodejs的版本管理工具 默认安装位置 C:\Users\userName\AppData\Roaming\nvm x 1 C:\Users\userName\AppData\Ro ...
- MyBatis从入门到精通(第6章):MyBatis 高级查询->6.1.1高级结果映射之一对一映射
jdk1.8.MyBatis3.4.6.MySQL数据库5.6.45.IntelliJ IDEA 2019.2.4 本章主要包含的内容为 MyBatis 的高级结果映射,主要处理数据库一对一.一对多的 ...
- gradle问题
1, my gradle version is 4.6 . in project.gradle : change dependencies { classpath 'com.android.tools ...
- 帝国CMS7.5后台美化模板 后台风格修改 帝国CMS后台模板
都知道帝国CMS功能强悍,生成静态html也非常好用.可是有时候他的后台样式,丑的让你不想用,dede呢,漏洞太多,PHPCMS好看,可是门槛要求高,你会写PHP才行. 帝国CMS后台美化模板:全面美 ...
- eclipse创建文件携带作者时间
windows–>preference Java–>Code Style–>Code Templates code–>new Java files 编辑它 ${filecomm ...
- swoole使用协程
协程:协程可以理解为纯用户态的线程,其通过协作而不是抢占来进行切换.相对于进程或者线程,协程所有的操作都可以在用户态完成,创建和切换的消耗更低.Swoole可以为每一个请求创建对应的协程,根据IO的状 ...
- video文件转blob
//创建 XMLHttpRequest 对象 var xhr = new XMLHttpRequest(); //配置请求方式.请求地址以及是否同步 xhr.open('POST', './play' ...
- MFC的程序,不想显示窗口,任务栏里也不显示
在dialog的oninitdialog里设置如下属性,很简单,网上一些乱七八糟的做法,一行代码就能搞定啊 SetWindowPos(&CWnd::wndNoTopMost,0,0,0,0,S ...
- Clairaut 定理 证明
(Clairaut 定理)设 $E$ 是 $\mathbf{R}^n$ 的开子集合,并设 $f:\mathbf{E}\to \mathbf{R}^{m}$ 是 $E$ 上的二次连续可微函数.那么对于一 ...
- SVN服务器的搭建(一)
1.基本概念 1.1.什么是版本控制 简单点来说,版本控制就是数据仓库,它可以记录你对文件的每次更改.这样,就算你在昏天黑地的改了几个月后老板说不要了,还是按照过去那样,你也不会抓狂,简单的恢复版本操 ...