D. Rescue Nibel! 解析(思維、組合、離散化、差分)
Codeforce 1420 D. Rescue Nibel! 解析(思維、組合、離散化、差分)
今天我們來看看CF1420D
題目連結
題目
給你\(n\)個區間,求有幾種方法使得\(k\)個區間的交集非空。
前言
組合不會算,也想不到離散化
想法
首先需要找個依據來枚舉開始計算,而我們可以觀察到:對於任何一個\(k\)個區間的交集,這個交集的左界一定是某個區間的左界,也就是說我們可以枚舉交集所有可能的左界,把答案加總即可。
而假設要計算交集從\(i\)開始的方法數,我們必須知道究竟有多少個區間有包含這個左界,但是\(l_i,r_i\le10^9\)實在太大了,即使我們做差分也時間不夠,因此我們需要離散化整個座標軸。
差分即是:\(cnt[左界]++,cnt[右界+1]--\),如此一來只要把整個\(cnt\)數列做前綴和,其結果就是每個點被覆蓋的次數。
離散化:我們先把所有\(l_i,r_i\)丟進一個\(vector\)裡,並且只留下相異元素、排序,如此一來某原始座標\(x\)的離散化後的座標即是\(lower\_bound(vector_{start},vector_{end},x)\)。
我們還需要紀錄:對於每一個座標,有多少左界從這開始。
如此一來,我們只要遍歷所有座標點,答案加上:(覆蓋的區間中選\(k\)個的方法數\(-\)沒選到從當前座標開始的區間的方法數),就可以算出答案。
而還有一個難點即是計算組合數。我們可以先愈處理所有\(x!\)的數值和模反元素(計算模反元素可以用Fermat's Little Theorem:\(a^{p-1}\equiv1\mod p\),因為\(998244353\)是質數,所以\(a^{p-2}\equiv a^{-1}\mod p\)),接著就用一般的公式計算即可。
程式碼:
const int _n=3e5+10;
int t,n,k,cnt[_n<<1],num[_n<<1];
PII la[_n];
VI v;
int fac[_n],inv[_n];
void exgcd(int a,int b,int& d,int& x,int& y){
if(!b)x=1,y=0,d=a;
else exgcd(b,a%b,d,y,x),y=(1ll*y-1ll*x*(a/b)%mod+mod)%mod;
}
int C(int m,int n){
if(m<n)return 0;
if(m<mod and n<mod)return 1ll*fac[m]*inv[n]%mod*inv[m-n]%mod;
return 1ll*C(m/mod,n/mod)*C(m%mod,n%mod)%mod;
}
void genInv(){
fac[0]=1;rep(i,1,n+1)fac[i]=1ll*fac[i-1]*i%mod;
//int tmp1,tmp2;rep(i,0,n+1)exgcd(fac[i],mod,tmp1,inv[i],tmp2);
inv[n]=powmod(fac[n],mod-2);per(i,0,n)inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n){cin>>la[i].fi>>la[i].se;v.pb(la[i].fi),v.pb(la[i].se);}
sort(all(v));int nn=unique(all(v))-v.begin(); genInv(); ll ans=0;
rep(i,0,n){
la[i].fi=lower_bound(v.begin(),v.begin()+nn,la[i].fi)-v.begin();
la[i].se=lower_bound(v.begin(),v.begin()+nn,la[i].se)-v.begin();
}rep(i,0,n)cnt[la[i].fi]++,cnt[la[i].se+1]--,num[la[i].fi]++;
rep(i,1,nn)cnt[i]=cnt[i-1]+cnt[i];
rep(i,0,nn)ans=(ans+C(cnt[i],k)-C(cnt[i]-num[i],k)+mod)%mod;
cout<<ans<<'\n';
return 0;
}
標頭、模板請點Submission看(\(exgcd\)用不到,且\(C\)函數我寫的是Lucas定理法)
Submission
D. Rescue Nibel! 解析(思維、組合、離散化、差分)的更多相关文章
- D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)
Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...
- B. Two Fairs 解析(思維、DFS、組合)
Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...
- D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)
Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...
- A. Arena of Greed 解析(思維)
Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...
- E. Almost Regular Bracket Sequence 解析(思維)
Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...
- C2. Power Transmission (Hard Edition) 解析(思維、幾何)
Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...
- F. Moving Points 解析(思維、離散化、BIT、前綴和)
Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...
- B. Two Arrays 解析(思維)
Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...
- C. k-Amazing Numbers 解析(思維)
Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...
随机推荐
- .netcore 3.1 C# 微信小程序发送订阅消息
一.appsettings.json定义小程序配置信息 "WX": { "AppId": "wx88822730803edd44", &qu ...
- vue学习03 v-html
vue学习03v-html v-html指令的作用是:设置元素的内部html链接 内容有html 的结构会被解析为标签 v-text指令无论内容是什么,只会解析文本 解析文本使用v-text,需要解析 ...
- Alink漫谈(二十二) :源码分析之聚类评估
Alink漫谈(二十二) :源码分析之聚类评估 目录 Alink漫谈(二十二) :源码分析之聚类评估 0x00 摘要 0x01 背景概念 1.1 什么是聚类 1.2 聚类分析的方法 1.3 聚类评估 ...
- Linux常用命令代码大全
arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 – (SMBIOS / DMI ...
- 软件定义网络实验记录④--Open vSwitch 实验——Mininet 中使用 OVS 命令
一.实验目的 Mininet 安装之后,会连带安装 Open vSwitch,可以直接通过 Python 脚本调用 Open vSwitch 命令,从而直接控制 Open vSwitch,通过实验了解 ...
- 使用Cadence绘制PCB流程
转载:https://blog.csdn.net/hailin0716/article/details/47169799 之前使用过cadence画过几块板子,一直没有做过整理.每次画图遇到问题时,都 ...
- 小白使用Hystrix
Hystrix是什么东西?百度一下: 没错,hystrix是豪猪的意思,作为SpringCloud微服务系统中保持服务稳定的重要组件,正如它的名字一样,它对整个系统起到了保护的作用. 在许多文章当中把 ...
- c#之task与thread区别及其使用
如果需要查看更多文章,请微信搜索公众号 csharp编程大全,需要进C#交流群群请加微信z438679770,备注进群, 我邀请你进群! ! ! --------------------------- ...
- http_parser
最近读了 http_parser 的源码,记录下. 有意思的地方: 1) 协议解析可以不完全解析完,但是当前 parser 会记录解析状态,这样可以继续解析 2) 协议解析首要还是要了解协议 ...
- macvlan几种模式
vepa模式:各个子设备直接无法直接通信(可以通过支持端口聚合的交换机通信),可以和外部通信. private模式:和vepa模式类似,各个子设备之间无法通信,即使通过支持端口聚合的交换机也不能. b ...