Codeforce 1420 D. Rescue Nibel! 解析(思維、組合、離散化、差分)

今天我們來看看CF1420D

題目連結

題目

給你\(n\)個區間,求有幾種方法使得\(k\)個區間的交集非空。

前言

組合不會算,也想不到離散化

想法

首先需要找個依據來枚舉開始計算,而我們可以觀察到:對於任何一個\(k\)個區間的交集,這個交集的左界一定是某個區間的左界,也就是說我們可以枚舉交集所有可能的左界,把答案加總即可。

而假設要計算交集從\(i\)開始的方法數,我們必須知道究竟有多少個區間有包含這個左界,但是\(l_i,r_i\le10^9\)實在太大了,即使我們做差分也時間不夠,因此我們需要離散化整個座標軸。

差分即是:\(cnt[左界]++,cnt[右界+1]--\),如此一來只要把整個\(cnt\)數列做前綴和,其結果就是每個點被覆蓋的次數。

離散化:我們先把所有\(l_i,r_i\)丟進一個\(vector\)裡,並且只留下相異元素、排序,如此一來某原始座標\(x\)的離散化後的座標即是\(lower\_bound(vector_{start},vector_{end},x)\)。

我們還需要紀錄:對於每一個座標,有多少左界從這開始。

如此一來,我們只要遍歷所有座標點,答案加上:(覆蓋的區間中選\(k\)個的方法數\(-\)沒選到從當前座標開始的區間的方法數),就可以算出答案。

而還有一個難點即是計算組合數。我們可以先愈處理所有\(x!\)的數值和模反元素(計算模反元素可以用Fermat's Little Theorem:\(a^{p-1}\equiv1\mod p\),因為\(998244353\)是質數,所以\(a^{p-2}\equiv a^{-1}\mod p\)),接著就用一般的公式計算即可。

程式碼:

const int _n=3e5+10;
int t,n,k,cnt[_n<<1],num[_n<<1];
PII la[_n];
VI v;
int fac[_n],inv[_n];
void exgcd(int a,int b,int& d,int& x,int& y){
if(!b)x=1,y=0,d=a;
else exgcd(b,a%b,d,y,x),y=(1ll*y-1ll*x*(a/b)%mod+mod)%mod;
}
int C(int m,int n){
if(m<n)return 0;
if(m<mod and n<mod)return 1ll*fac[m]*inv[n]%mod*inv[m-n]%mod;
return 1ll*C(m/mod,n/mod)*C(m%mod,n%mod)%mod;
}
void genInv(){
fac[0]=1;rep(i,1,n+1)fac[i]=1ll*fac[i-1]*i%mod;
//int tmp1,tmp2;rep(i,0,n+1)exgcd(fac[i],mod,tmp1,inv[i],tmp2);
inv[n]=powmod(fac[n],mod-2);per(i,0,n)inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n){cin>>la[i].fi>>la[i].se;v.pb(la[i].fi),v.pb(la[i].se);}
sort(all(v));int nn=unique(all(v))-v.begin(); genInv(); ll ans=0;
rep(i,0,n){
la[i].fi=lower_bound(v.begin(),v.begin()+nn,la[i].fi)-v.begin();
la[i].se=lower_bound(v.begin(),v.begin()+nn,la[i].se)-v.begin();
}rep(i,0,n)cnt[la[i].fi]++,cnt[la[i].se+1]--,num[la[i].fi]++;
rep(i,1,nn)cnt[i]=cnt[i-1]+cnt[i];
rep(i,0,nn)ans=(ans+C(cnt[i],k)-C(cnt[i]-num[i],k)+mod)%mod;
cout<<ans<<'\n';
return 0;
}

標頭、模板請點Submission看(\(exgcd\)用不到,且\(C\)函數我寫的是Lucas定理法)

Submission

D. Rescue Nibel! 解析(思維、組合、離散化、差分)的更多相关文章

  1. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  2. B. Two Fairs 解析(思維、DFS、組合)

    Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...

  3. D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)

    Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...

  4. A. Arena of Greed 解析(思維)

    Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...

  5. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  6. C2. Power Transmission (Hard Edition) 解析(思維、幾何)

    Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...

  7. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  8. B. Two Arrays 解析(思維)

    Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...

  9. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

随机推荐

  1. Python安装与环境变量配置 入门详解 - 精简归纳

    Python安装与环境变量配置 入门详解 - 精简归纳 JERRY_Z. ~ 2020 / 9 / 24 转载请注明出处!️ 目录 Python安装与环境变量配置 入门详解 - 精简归纳 一.下载Py ...

  2. luogu 3376 最小费用最大流 模板

    类似EK算法,只是将bfs改成spfa,求最小花费. 为什么可以呢,加入1-3-7是一条路,求出一个流量为40,那么40*f[1]+40*f[2]+40*f[3],f[1]是第一条路的单位费用,f[2 ...

  3. 记一次GDB调试

    目标文件: ciscn_2019_ne_5. 来源 :https://buuoj.cn/challenges 保护情况:保护是没有保护的 主要伪代码: int __cdecl main(int arg ...

  4. 升​级​到​w​i​n​8​.​1​导​致​o​r​a​c​l​e​服​务​丢​失​的​处​理

    针对升级到win8.1导致oracle服务丢失的处理 1.首先保证oracle相关程序能够运行,如net manager,如果能够运行,说明oracle安装仍然有效,只是因为服务被"净化&q ...

  5. windbg分析dump-解决mscorwks不匹配

    目录 前言 什么是mscorwks 什么是SOS 什么是mscordacwks 上述错误是什么意思? 什么时候会出现该错误 如何修复错误 符号文件目录规则 相关资料 前言 在使用.net的生产环境时, ...

  6. shiro认证流程源码分析--练气初期

    写在前面 在上一篇文章当中,我们通过一个简单的例子,简单地认识了一下shiro.在这篇文章当中,我们将通过阅读源码的方式了解shiro的认证流程. 建议大家边读文章边动手调试代码,这样效果会更好. 认 ...

  7. 使用Appium进行iOS的真机自动化测试

    windows不支持appium连接ios,只适用于mac 使用Appium进行iOS的真机自动化测试 安装类库 Homebrew 如果没有安装过Homebrew,先安装[ homebrew ] np ...

  8. CSG:清华大学提出通过分化类特定卷积核来训练可解释的卷积网络 | ECCV 2020 Oral

    论文提出类特定控制门CSG来引导网络学习类特定的卷积核,并且加入正则化方法来稀疏化CSG矩阵,进一步保证类特定.从实验结果来看,CSG的稀疏性能够引导卷积核与类别的强关联,在卷积核层面产生高度类相关的 ...

  9. day64:nginx模块之限制连接&状态监控&Location/用nginx+php跑项目/扩展应用节点

    目录 1.nginx模块:限制连接 limit_conn 2.nginx模块:状态监控 stub_status 3.nginx模块:Location 4.用nginx+php跑wordpress项目 ...

  10. 物联网wifi模块

    物联网wifi模块 物联网wifi模块 是上海卓岚推出的MQTT+JSON转Modbus物联网WiFi核心模块.支持以MQTT的方式连接云端服务器,支持可以界面话配置,自主采集Modbus仪表/645 ...