D. Rescue Nibel! 解析(思維、組合、離散化、差分)
Codeforce 1420 D. Rescue Nibel! 解析(思維、組合、離散化、差分)
今天我們來看看CF1420D
題目連結
題目
給你\(n\)個區間,求有幾種方法使得\(k\)個區間的交集非空。
前言
組合不會算,也想不到離散化
想法
首先需要找個依據來枚舉開始計算,而我們可以觀察到:對於任何一個\(k\)個區間的交集,這個交集的左界一定是某個區間的左界,也就是說我們可以枚舉交集所有可能的左界,把答案加總即可。
而假設要計算交集從\(i\)開始的方法數,我們必須知道究竟有多少個區間有包含這個左界,但是\(l_i,r_i\le10^9\)實在太大了,即使我們做差分也時間不夠,因此我們需要離散化整個座標軸。
差分即是:\(cnt[左界]++,cnt[右界+1]--\),如此一來只要把整個\(cnt\)數列做前綴和,其結果就是每個點被覆蓋的次數。
離散化:我們先把所有\(l_i,r_i\)丟進一個\(vector\)裡,並且只留下相異元素、排序,如此一來某原始座標\(x\)的離散化後的座標即是\(lower\_bound(vector_{start},vector_{end},x)\)。
我們還需要紀錄:對於每一個座標,有多少左界從這開始。
如此一來,我們只要遍歷所有座標點,答案加上:(覆蓋的區間中選\(k\)個的方法數\(-\)沒選到從當前座標開始的區間的方法數),就可以算出答案。
而還有一個難點即是計算組合數。我們可以先愈處理所有\(x!\)的數值和模反元素(計算模反元素可以用Fermat's Little Theorem:\(a^{p-1}\equiv1\mod p\),因為\(998244353\)是質數,所以\(a^{p-2}\equiv a^{-1}\mod p\)),接著就用一般的公式計算即可。
程式碼:
const int _n=3e5+10;
int t,n,k,cnt[_n<<1],num[_n<<1];
PII la[_n];
VI v;
int fac[_n],inv[_n];
void exgcd(int a,int b,int& d,int& x,int& y){
if(!b)x=1,y=0,d=a;
else exgcd(b,a%b,d,y,x),y=(1ll*y-1ll*x*(a/b)%mod+mod)%mod;
}
int C(int m,int n){
if(m<n)return 0;
if(m<mod and n<mod)return 1ll*fac[m]*inv[n]%mod*inv[m-n]%mod;
return 1ll*C(m/mod,n/mod)*C(m%mod,n%mod)%mod;
}
void genInv(){
fac[0]=1;rep(i,1,n+1)fac[i]=1ll*fac[i-1]*i%mod;
//int tmp1,tmp2;rep(i,0,n+1)exgcd(fac[i],mod,tmp1,inv[i],tmp2);
inv[n]=powmod(fac[n],mod-2);per(i,0,n)inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n){cin>>la[i].fi>>la[i].se;v.pb(la[i].fi),v.pb(la[i].se);}
sort(all(v));int nn=unique(all(v))-v.begin(); genInv(); ll ans=0;
rep(i,0,n){
la[i].fi=lower_bound(v.begin(),v.begin()+nn,la[i].fi)-v.begin();
la[i].se=lower_bound(v.begin(),v.begin()+nn,la[i].se)-v.begin();
}rep(i,0,n)cnt[la[i].fi]++,cnt[la[i].se+1]--,num[la[i].fi]++;
rep(i,1,nn)cnt[i]=cnt[i-1]+cnt[i];
rep(i,0,nn)ans=(ans+C(cnt[i],k)-C(cnt[i]-num[i],k)+mod)%mod;
cout<<ans<<'\n';
return 0;
}
標頭、模板請點Submission看(\(exgcd\)用不到,且\(C\)函數我寫的是Lucas定理法)
Submission
D. Rescue Nibel! 解析(思維、組合、離散化、差分)的更多相关文章
- D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)
Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...
- B. Two Fairs 解析(思維、DFS、組合)
Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...
- D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)
Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...
- A. Arena of Greed 解析(思維)
Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...
- E. Almost Regular Bracket Sequence 解析(思維)
Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...
- C2. Power Transmission (Hard Edition) 解析(思維、幾何)
Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...
- F. Moving Points 解析(思維、離散化、BIT、前綴和)
Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...
- B. Two Arrays 解析(思維)
Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...
- C. k-Amazing Numbers 解析(思維)
Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...
随机推荐
- Python安装与环境变量配置 入门详解 - 精简归纳
Python安装与环境变量配置 入门详解 - 精简归纳 JERRY_Z. ~ 2020 / 9 / 24 转载请注明出处!️ 目录 Python安装与环境变量配置 入门详解 - 精简归纳 一.下载Py ...
- luogu 3376 最小费用最大流 模板
类似EK算法,只是将bfs改成spfa,求最小花费. 为什么可以呢,加入1-3-7是一条路,求出一个流量为40,那么40*f[1]+40*f[2]+40*f[3],f[1]是第一条路的单位费用,f[2 ...
- 记一次GDB调试
目标文件: ciscn_2019_ne_5. 来源 :https://buuoj.cn/challenges 保护情况:保护是没有保护的 主要伪代码: int __cdecl main(int arg ...
- 升级到win8.1导致oracle服务丢失的处理
针对升级到win8.1导致oracle服务丢失的处理 1.首先保证oracle相关程序能够运行,如net manager,如果能够运行,说明oracle安装仍然有效,只是因为服务被"净化&q ...
- windbg分析dump-解决mscorwks不匹配
目录 前言 什么是mscorwks 什么是SOS 什么是mscordacwks 上述错误是什么意思? 什么时候会出现该错误 如何修复错误 符号文件目录规则 相关资料 前言 在使用.net的生产环境时, ...
- shiro认证流程源码分析--练气初期
写在前面 在上一篇文章当中,我们通过一个简单的例子,简单地认识了一下shiro.在这篇文章当中,我们将通过阅读源码的方式了解shiro的认证流程. 建议大家边读文章边动手调试代码,这样效果会更好. 认 ...
- 使用Appium进行iOS的真机自动化测试
windows不支持appium连接ios,只适用于mac 使用Appium进行iOS的真机自动化测试 安装类库 Homebrew 如果没有安装过Homebrew,先安装[ homebrew ] np ...
- CSG:清华大学提出通过分化类特定卷积核来训练可解释的卷积网络 | ECCV 2020 Oral
论文提出类特定控制门CSG来引导网络学习类特定的卷积核,并且加入正则化方法来稀疏化CSG矩阵,进一步保证类特定.从实验结果来看,CSG的稀疏性能够引导卷积核与类别的强关联,在卷积核层面产生高度类相关的 ...
- day64:nginx模块之限制连接&状态监控&Location/用nginx+php跑项目/扩展应用节点
目录 1.nginx模块:限制连接 limit_conn 2.nginx模块:状态监控 stub_status 3.nginx模块:Location 4.用nginx+php跑wordpress项目 ...
- 物联网wifi模块
物联网wifi模块 物联网wifi模块 是上海卓岚推出的MQTT+JSON转Modbus物联网WiFi核心模块.支持以MQTT的方式连接云端服务器,支持可以界面话配置,自主采集Modbus仪表/645 ...