Codeforce 1420 D. Rescue Nibel! 解析(思維、組合、離散化、差分)

今天我們來看看CF1420D

題目連結

題目

給你\(n\)個區間,求有幾種方法使得\(k\)個區間的交集非空。

前言

組合不會算,也想不到離散化

想法

首先需要找個依據來枚舉開始計算,而我們可以觀察到:對於任何一個\(k\)個區間的交集,這個交集的左界一定是某個區間的左界,也就是說我們可以枚舉交集所有可能的左界,把答案加總即可。

而假設要計算交集從\(i\)開始的方法數,我們必須知道究竟有多少個區間有包含這個左界,但是\(l_i,r_i\le10^9\)實在太大了,即使我們做差分也時間不夠,因此我們需要離散化整個座標軸。

差分即是:\(cnt[左界]++,cnt[右界+1]--\),如此一來只要把整個\(cnt\)數列做前綴和,其結果就是每個點被覆蓋的次數。

離散化:我們先把所有\(l_i,r_i\)丟進一個\(vector\)裡,並且只留下相異元素、排序,如此一來某原始座標\(x\)的離散化後的座標即是\(lower\_bound(vector_{start},vector_{end},x)\)。

我們還需要紀錄:對於每一個座標,有多少左界從這開始。

如此一來,我們只要遍歷所有座標點,答案加上:(覆蓋的區間中選\(k\)個的方法數\(-\)沒選到從當前座標開始的區間的方法數),就可以算出答案。

而還有一個難點即是計算組合數。我們可以先愈處理所有\(x!\)的數值和模反元素(計算模反元素可以用Fermat's Little Theorem:\(a^{p-1}\equiv1\mod p\),因為\(998244353\)是質數,所以\(a^{p-2}\equiv a^{-1}\mod p\)),接著就用一般的公式計算即可。

程式碼:

const int _n=3e5+10;
int t,n,k,cnt[_n<<1],num[_n<<1];
PII la[_n];
VI v;
int fac[_n],inv[_n];
void exgcd(int a,int b,int& d,int& x,int& y){
if(!b)x=1,y=0,d=a;
else exgcd(b,a%b,d,y,x),y=(1ll*y-1ll*x*(a/b)%mod+mod)%mod;
}
int C(int m,int n){
if(m<n)return 0;
if(m<mod and n<mod)return 1ll*fac[m]*inv[n]%mod*inv[m-n]%mod;
return 1ll*C(m/mod,n/mod)*C(m%mod,n%mod)%mod;
}
void genInv(){
fac[0]=1;rep(i,1,n+1)fac[i]=1ll*fac[i-1]*i%mod;
//int tmp1,tmp2;rep(i,0,n+1)exgcd(fac[i],mod,tmp1,inv[i],tmp2);
inv[n]=powmod(fac[n],mod-2);per(i,0,n)inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
main(void) {ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin>>n>>k;rep(i,0,n){cin>>la[i].fi>>la[i].se;v.pb(la[i].fi),v.pb(la[i].se);}
sort(all(v));int nn=unique(all(v))-v.begin(); genInv(); ll ans=0;
rep(i,0,n){
la[i].fi=lower_bound(v.begin(),v.begin()+nn,la[i].fi)-v.begin();
la[i].se=lower_bound(v.begin(),v.begin()+nn,la[i].se)-v.begin();
}rep(i,0,n)cnt[la[i].fi]++,cnt[la[i].se+1]--,num[la[i].fi]++;
rep(i,1,nn)cnt[i]=cnt[i-1]+cnt[i];
rep(i,0,nn)ans=(ans+C(cnt[i],k)-C(cnt[i]-num[i],k)+mod)%mod;
cout<<ans<<'\n';
return 0;
}

標頭、模板請點Submission看(\(exgcd\)用不到,且\(C\)函數我寫的是Lucas定理法)

Submission

D. Rescue Nibel! 解析(思維、組合、離散化、差分)的更多相关文章

  1. D. New Year Santa Network 解析(思維、DFS、組合、樹狀DP)

    Codeforce 500 D. New Year Santa Network 解析(思維.DFS.組合.樹狀DP) 今天我們來看看CF500D 題目連結 題目 給你一棵有邊權的樹,求現在隨機取\(3 ...

  2. B. Two Fairs 解析(思維、DFS、組合)

    Codeforce 1276 B. Two Fairs 解析(思維.DFS.組合) 今天我們來看看CF1276B 題目連結 題目 給一個連通圖,並給兩個點(\(a,b\)),求有多少點對使得:任一路徑 ...

  3. D. Maximum Distributed Tree 解析(思維、DFS、組合、貪心、DP)

    Codeforce 1401 D. Maximum Distributed Tree 解析(思維.DFS.組合.貪心.DP) 今天我們來看看CF1401D 題目連結 題目 直接看原題比較清楚,略. 前 ...

  4. A. Arena of Greed 解析(思維)

    Codeforce 1425 A. Arena of Greed 解析(思維) 今天我們來看看CF1425A 題目連結 題目 略,請直接看原題. 前言 明明是難度1400的題目,但總感覺不是很好寫阿, ...

  5. E. Almost Regular Bracket Sequence 解析(思維)

    Codeforce 1095 E. Almost Regular Bracket Sequence 解析(思維) 今天我們來看看CF1095E 題目連結 題目 給你一個括號序列,求有幾個字元改括號方向 ...

  6. C2. Power Transmission (Hard Edition) 解析(思維、幾何)

    Codeforce 1163 C2. Power Transmission (Hard Edition) 解析(思維.幾何) 今天我們來看看CF1163C2 題目連結 題目 給一堆點,每兩個點會造成一 ...

  7. F. Moving Points 解析(思維、離散化、BIT、前綴和)

    Codeforce 1311 F. Moving Points 解析(思維.離散化.BIT.前綴和) 今天我們來看看CF1311F 題目連結 題目 略,請直接看原題. 前言 最近寫1900的題目更容易 ...

  8. B. Two Arrays 解析(思維)

    Codeforce 1417 B. Two Arrays 解析(思維) 今天我們來看看CF1417B 題目連結 題目 略,請直接看原題. 前言 a @copyright petjelinux 版權所有 ...

  9. C. k-Amazing Numbers 解析(思維)

    Codeforce 1417 C. k-Amazing Numbers 解析(思維) 今天我們來看看CF1417C 題目連結 題目 略,請直接看原題. 前言 我實作好慢... @copyright p ...

随机推荐

  1. .netcore 3.1 C# 微信小程序发送订阅消息

    一.appsettings.json定义小程序配置信息 "WX": { "AppId": "wx88822730803edd44", &qu ...

  2. vue学习03 v-html

    vue学习03v-html v-html指令的作用是:设置元素的内部html链接 内容有html 的结构会被解析为标签 v-text指令无论内容是什么,只会解析文本 解析文本使用v-text,需要解析 ...

  3. Alink漫谈(二十二) :源码分析之聚类评估

    Alink漫谈(二十二) :源码分析之聚类评估 目录 Alink漫谈(二十二) :源码分析之聚类评估 0x00 摘要 0x01 背景概念 1.1 什么是聚类 1.2 聚类分析的方法 1.3 聚类评估 ...

  4. Linux常用命令代码大全

    arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 – (SMBIOS / DMI ...

  5. 软件定义网络实验记录④--Open vSwitch 实验——Mininet 中使用 OVS 命令

    一.实验目的 Mininet 安装之后,会连带安装 Open vSwitch,可以直接通过 Python 脚本调用 Open vSwitch 命令,从而直接控制 Open vSwitch,通过实验了解 ...

  6. 使用Cadence绘制PCB流程

    转载:https://blog.csdn.net/hailin0716/article/details/47169799 之前使用过cadence画过几块板子,一直没有做过整理.每次画图遇到问题时,都 ...

  7. 小白使用Hystrix

    Hystrix是什么东西?百度一下: 没错,hystrix是豪猪的意思,作为SpringCloud微服务系统中保持服务稳定的重要组件,正如它的名字一样,它对整个系统起到了保护的作用. 在许多文章当中把 ...

  8. c#之task与thread区别及其使用

    如果需要查看更多文章,请微信搜索公众号 csharp编程大全,需要进C#交流群群请加微信z438679770,备注进群, 我邀请你进群! ! ! --------------------------- ...

  9. http_parser

    最近读了 http_parser 的源码,记录下.    有意思的地方: 1)  协议解析可以不完全解析完,但是当前 parser 会记录解析状态,这样可以继续解析 2)  协议解析首要还是要了解协议 ...

  10. macvlan几种模式

    vepa模式:各个子设备直接无法直接通信(可以通过支持端口聚合的交换机通信),可以和外部通信. private模式:和vepa模式类似,各个子设备之间无法通信,即使通过支持端口聚合的交换机也不能. b ...