MapReduce统计每个用户的使用总流量
1、原始数据
2、使用java程序
1)新建项目
2)导包
hadoop-2.7.3\share\hadoop\mapreduce
+hsfs的那些包
+common
3、写项目
1)实体类
注:属性直接定义为String和 Long定义更方便
package com.zy.flow; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable; public class Flow implements Writable{//Writable可序列化的(序列化:把对象变成二进制流 反序列化:把二进制流变成对象)
//包含 电话 上行流量 下行流量 总流量
private Text phone;
private LongWritable upflow;//上行
private LongWritable downflow;//下行
private LongWritable sumflow;//总流量
//这个对象以后要在集群中传输,所以要可序列化 //序列化反序列化顺序要一致
@Override//反序列化时会调用该方法
public void readFields(DataInput in) throws IOException {
phone=new Text(in.readUTF());
upflow=new LongWritable(in.readLong());
downflow=new LongWritable(in.readLong());
sumflow=new LongWritable(in.readLong());
} @Override//序列化时会调用该方法
public void write(DataOutput out) throws IOException {
out.writeUTF(phone.toString());
out.writeLong(upflow.get());
out.writeLong(downflow.get());
out.writeLong(sumflow.get()); }
public Text getPhone() {
return phone;
}
public void setPhone(Text phone) {
this.phone = phone;
}
public LongWritable getUpflow() {
return upflow;
}
public void setUpflow(LongWritable upflow) {
this.upflow = upflow;
}
public LongWritable getDownflow() {
return downflow;
}
public void setDownflow(LongWritable downflow) {
this.downflow = downflow;
}
public LongWritable getSumflow() {
return sumflow;
}
public void setSumflow(LongWritable sumflow) {
this.sumflow = sumflow;
}
public Flow() { }
public Flow(Text phone, LongWritable upflow, LongWritable downflow, LongWritable sumflow) {
super();
this.phone = phone;
this.upflow = upflow;
this.downflow = downflow;
this.sumflow = sumflow;
}
public Flow(LongWritable upflow, LongWritable downflow, LongWritable sumflow) {
super();
this.upflow = upflow;
this.downflow = downflow;
this.sumflow = sumflow;
} @Override//toString最后就是reduce中输出值的样式
public String toString() {
//输出样式
return upflow+"\t"+downflow+"\t"+sumflow;
} }
2)FlowMap类
package com.zy.flow; import java.io.IOException; import javax.security.auth.callback.LanguageCallback; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class FlowMap extends Mapper<LongWritable, Text, Text, Flow>{ @Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Flow>.Context context)
throws IOException, InterruptedException {
//输入的值 value
//切分value 寻找有价值的列
String[] split = value.toString().split("\t");
int length=split.length;
//取哪几列split[1] split[length-3] split[length-2]
String phone=split[1];
Long upflow=Long.parseLong(split[length-3]);
Long downflow=Long.parseLong(split[length-2]);
Long sumflow=upflow+downflow;
//输出
context.write(new Text(phone), new Flow(new Text(phone), new LongWritable(upflow), new LongWritable(downflow),new LongWritable(sumflow)));
//对象里虽然用不到phone但是要给它赋值,不然序列化时会报空指针异常
}
}
3)Part(分区)类
package com.zy.flow;
import java.util.HashMap;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
// map的输出是suffer的输入
public class Part extends Partitioner<Text, Flow> {//分区
//逻辑自己写 HashMap<String,Integer> map = new HashMap(); public void setMap(){
map.put("135",0);
map.put("136", 1);
map.put("137",2);
map.put("138", 3);
map.put("139",4);
}
// 生成的文件 part-00000 part的编号的结尾就是这个int类型的返回值;
@Override
public int getPartition(Text key, Flow value, int arg2) { setMap();
//从输入的数据中获得电话的前三位跟map对比。决定分到哪个区中
String substring = key.toString().substring(0, 3);//例如截取135 return map.get(substring)==null?5:map.get(substring);//根据键取值 键135 取出0
//其他号码分到(编号为5)第6个区中
}
//在这个逻辑下partition分了6个区,所以以后要指定6个reducetask }
4)FlowReduce类
package com.zy.flow; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class FlowReduce extends Reducer<Text, Flow, Text, Flow>{
@Override
protected void reduce(Text key, Iterable<Flow> value, Reducer<Text, Flow, Text, Flow>.Context context)
throws IOException, InterruptedException {
//累加
long allup=0;
long alldown=0;
for (Flow flow : value) {
allup+=Long.parseLong(flow.getUpflow().toString());//同一个电话的上行流量累加
alldown+=Long.parseLong(flow.getDownflow().toString());//同一个电话的下行流量累加 }
long allsum=allup+alldown;
context.write(key, new Flow(new Text(key), new LongWritable(allup), new LongWritable(alldown), new LongWritable(allsum)));
} }
5)FlowApp类
package com.zy.flow; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class FlowApp { public static void main(String[] args) throws Exception {
//创建配置对象
Configuration configuration = new Configuration();
//得到job实例
Job job = Job.getInstance(configuration);
//指定job运行类
job.setJarByClass(FlowApp.class); //指定job中的mapper
job.setMapperClass(FlowMap.class);
//指定mapper中的输出键和值类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Flow.class); //指定job中的reducer
job.setReducerClass(FlowReduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Flow.class); //-----
//指定Partitioner使用的类
job.setPartitionerClass(Part.class);
//指定ReduceTask数量
job.setNumReduceTasks(6);
//----- //指定输入文件
FileInputFormat.setInputPaths(job, new Path(args[0]));//运行时填入参数
//指定输出文件
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//提交作业
job.waitForCompletion(true); } }
4、运行
1)打包
2)上传到linux
3)运行
MapReduce统计每个用户的使用总流量的更多相关文章
- MongoDb 用 mapreduce 统计留存率
MongoDb 用 mapreduce 统计留存率(金庆的专栏)留存的定义采用的是新增账号第X日:某日新增的账号中,在新增日后第X日有登录行为记为留存 输出如下:(类同友盟的留存率显示)留存用户注册时 ...
- 使用 Redis 统计在线用户人数
在构建应用的时候, 我们经常需要对用户的一举一动进行记录, 而其中一个比较重要的操作, 就是对在线的用户进行记录. 本文将介绍四种使用 Redis 对在线用户进行记录的方案, 这些方案虽然都可以对在线 ...
- Hadoop基础-Map端链式编程之MapReduce统计TopN示例
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...
- Tomcat集群下获取memcached缓存对象数量,统计在线用户数据量
项目需要统计在线用户数量,系统部署在集群环境下,使用会话粘贴的方式解决Session问题.要想得到真实在线用户数,必须是所有节点的总和. 这里考虑使用memcached存放用户登录数据,key为use ...
- 用HttpSessionListener统计在线用户或做账号在线人数管理
使用HttpSessionListener接口可监听session的创建和失效 session是在用户第一次访问页面时创建 在session超时或调用request.getSession().inva ...
- 拼多多后台开发面试真题:如何用Redis统计独立用户访问量
众所周至,拼多多的待遇也是高的可怕,在挖人方面也是不遗余力,对于一些工作3年的开发,稍微优秀一点的,都给到30K的Offer,当然,拼多多加班也是出名的,一周上6天班是常态,每天工作时间基本都是超过1 ...
- 拼多多面试真题:如何用 Redis 统计独立用户访问量!
阅读本文大概需要 2.8 分钟. 作者:沙茶敏碎碎念 众所周至,拼多多的待遇也是高的可怕,在挖人方面也是不遗余力,对于一些工作 3 年的开发,稍微优秀一点的,都给到 30K 的 Offer. 当然,拼 ...
- 从GoogleClusterData统计每个用户的使用率、平均每次出价
之前将google cluster data导入了Azure上的MySQL数据库,下一步就是对这些数据进行分析, 挖掘用户的使用规律了. 首先,为了加快执行速度,对user,time等加入索引. 然后 ...
- 如何用 Redis 统计独立用户访问量
众所周至,拼多多的待遇也是高的可怕,在挖人方面也是不遗余力,对于一些工作3年的开发,稍微优秀一点的,都给到30K的Offer,当然,拼多多加班也是出名的,一周上6天班是常态,每天工作时间基本都是超过1 ...
随机推荐
- 基于 OpenMP 的奇偶排序算法的实现
代码: #include <omp.h> #include <iostream> #include <cstdlib> #include <ctime> ...
- Docker haproxy应用构建 (五)
编写dockerfile from centos-base:v1 MAINTAINER 57674891@qq.com RUN mkdir -p /data/{soft,src,logs,script ...
- 【JS学习】var let const声明变量的异同点
[JS学习]var let const声明变量的异同点 前言: 本博客系列为学习后盾人js教程过程中的记录与产出,如果对你有帮助,欢迎关注,点赞,分享.不足之处也欢迎指正,作者会积极思考与改正. 总述 ...
- Java开发手册之设计规约
1.谨慎使用继承的方式来进行扩展,优先使用聚合/组合的方式来实现.说明:不得已使用继承的话,必须符合里氏代换原则,此原则说父类能够出现的地方子类一定能够出现,比如,"把钱交出来", ...
- 【EXP/IMP】问题总结
为了使测试与生产数据保持一致,只需要导出数据的时候,可以将测试库的表truncate,保留其它如索引,trigger,constraints,grants等不用再重新导. exp时候rows=y,其它 ...
- kubernets之持久卷的动态配置
一 介绍持久卷的动态配置原理 前面介绍的pv以及pvc,都需要kubernets集群管理员来支持实际的底层存储,但是kubernets还支持动态配置持久卷来自动化完成这个任务集群管理员可以创建一个持 ...
- css全站变灰
2020年4月4日全国哀悼日这一天,我发现不少网址都变灰了,我第一想法就是怎么做到的?不可能换素材整个网址重做一遍吧?后面发现是用的其实是css的filter滤镜: grayscale可以将图像转化为 ...
- Core3.1 微信v3 JSAPI支付
1.前言 "小魏呀,这个微信支付还要多久?","快了快了老板,就等着最后一步了...","搞快点哈,就等着上线呢","...... ...
- 前端知识(一)04 Vue.js入门-谷粒学院
目录 一.介绍 1.Vue.js 是什么 2.初识Vue.js 二.基本语法 1.基本数据渲染和指令 2.双向数据绑定 3.事件 4.修饰符 5.条件渲染 6.列表渲染 7.实例生命周期 一.介绍 1 ...
- Python小度
这只是一个对话器!还不能听歌(反正我也没在UNIT平台配置听歌的功能)! 反正最近也不知怎么的,就想做一个AI对话器语音识别和语音输出都不要,input()和print()就行本来准备用小爱的,但要实 ...