UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp
LINK:小Z的礼物
太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的。
还是期望多少时间可以全部集齐.
相当于求出 \(E(max(S))\)表示最后一个出现的期望时间.
根据min-max容斥 显然有 \(E(max(S))=\sum_{T\subseteq S}(-1)^{|T|+1}E(min(T))\)
对于这道题 要求出所有的T 直接\(2^{cnt}\)枚举不太现实。
但是我们仍要对每个集合求出其概率.
考虑从矩阵上进行dp来进行压缩状态 那么因为一个格子的选择之和周围的格子的有关可以简单的记轮廓线来进行dp.
需要记录一下到底有多少个格子是有效的 代价正负一可以直接累计到状态里不需要多开一维.
然后就做完了.
值得一提的细节是 这个min-max容斥不包含空集.
code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 10000000000000000ll
#define inf 1000000000
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-10
#define sq sqrt
#define S second
#define F first
#define mod 998244353
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;
}
const int MAXN=110;
int n,m;
char a[MAXN][MAXN];
int inv[1200];
int f[2][1<<6][1200];
inline void add(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main()
{
//freopen("1.in","r",stdin);
gt(n);gt(m);
rep(1,n,i)scanf("%s",a[i]+1);
int sum=2*n*m-n-m;
int maxx=1<<n;--maxx;
int u=0;inv[1]=1;
f[u][0][0]=mod-1;
rep(2,sum,i)inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
rep(1,m,j)
{
rep(1,n,i)
{
u=u^1;
memset(f[u],0,sizeof(f[u]));
rep(0,maxx,k)
{
//put(f[u^1][k][1]);
rep(0,sum,l)if(f[u^1][k][l])
{
int s=k&(maxx^(1<<(i-1)));
add(f[u][s][l],f[u^1][k][l]);
if(a[i][j]=='*')
{
s=k|(1<<(i-1));
int cnt=0;
if(j>1&&!(k&(1<<(i-1))))++cnt;
if(i>1&&!(k&(1<<(i-2))))++cnt;
if(i<n)++cnt;if(j<m)++cnt;
add(f[u][s][l+cnt],mod-f[u^1][k][l]);
}
}
}
}
}
int ans=0;
rep(0,maxx,i)rep(1,sum,j)add(ans,(ll)f[u][i][j]*inv[j]%mod);
ans=(ll)ans*sum%mod;put(ans);
return 0;
}
UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp的更多相关文章
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
- UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)
题面传送门 本来说要找道轮廓线 \(dp\) 的题目刷刷来着的?然后就找到了这道题. 然鹅这个题给我最大的启发反而不在轮廓线 \(dp\),而在于让我新学会了一个玩意儿叫做 Min-Max 容斥. M ...
- UOJ 449 【集训队作业2018】喂鸽子 【生成函数,min-max容斥】
这是第100篇博客,所以肯定是要水过去的. 首先看到这种形式的东西首先min-max容斥一波,设\(f_{c,s}\)表示在\(c\)只咕咕中,经过\(s\)秒之后并没有喂饱任何一只的概率. \[ \ ...
- uoj #450[集训队作业2018]复读机
传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...
- UOJ#422. 【集训队作业2018】小Z的礼物
#422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...
- 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物
T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...
- UOJ #449. 【集训队作业2018】喂鸽子
UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...
随机推荐
- LNMP安装composer install时出现Warning: putenv()
layout: post title: LNMP安装composer install时出现Warning: putenv() has been disabled for security reason ...
- 【Nginx】实现负载均衡、限流、缓存、黑白名单和灰度发布,这是最全的一篇了!
写在前面 在<[高并发]面试官问我如何使用Nginx实现限流,我如此回答轻松拿到了Offer!>一文中,我们主要介绍了如何使用Nginx进行限流,以避免系统被大流量压垮.除此之外,Ngin ...
- 数据可视化之powerBI入门(十三)CALCULATE函数的最佳搭档:FILTER
https://zhuanlan.zhihu.com/p/64383000 介绍过CALCULATE函数之后,有必要再介绍它的最佳搭档:FILTER函数. CALCULATE函数的第二个及之后的参数是 ...
- Flask 基础组件(五):请求和响应
from flask import Flask from flask import request from flask import render_template from flask impor ...
- 数据可视化实例(十四):面积图 (matplotlib,pandas)
偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https:/ ...
- DirectX11 With Windows SDK--34 位移贴图
前言 在前面的章节中,我们学到了法线贴图和曲面细分.现在我们可以将这两者进行结合以改善效果,因为法线贴图仅仅只是改善了光照的细节,但它并没有从根本上改善几何体的细节.从某种意义上来说,法线贴图只是一个 ...
- Python Ethical Hacking - Persistence(1)
PRESISTENCE Persistence programs start when the system starts. Backdoors -> maintain our access. ...
- C# 判断和创建目录路径
在进行一些导出或下载时,需要创建一个本地路径,以供文件进行下载和创建. if (Directory.Exists(Server.MapPath("~/upimg/hufu")) = ...
- 如果你还不知道如何控制springboot中bean的加载顺序,那你一定要看此篇
1.为什么需要控制加载顺序 springboot遵从约定大于配置的原则,极大程度的解决了配置繁琐的问题.在此基础上,又提供了spi机制,用spring.factories可以完成一个小组件的自动装配功 ...
- 年薪50W京东软件测试工程师的成长路——我们都曾一样迷茫
这两天和朋友谈到软件测试的发展,其实软件测试已经在不知不觉中发生了非常大的改变,前几年的软件测试行业还是一个风口,随着不断地转行人员以及毕业的大学生疯狂地涌入软件测试行业,目前软件测试行业“缺口”已经 ...