[NOIP 2020] 微信步数
一、题目
二、题目
首先感谢一下这位大佬的博客,虽然我看不懂您的讲解,但是还是读得懂代码的
思路是 \(\tt jys\) 给我讲明白的,首先我们可以感觉到快速计算它肯定和矩形有关系,也就是满足某种条件的情况一定在某个矩形中,虽然很抽象,但是我们能大概感觉到这道题的核心思路是 乘法原理
要求的是步数,其实相当于方案数加权,在它不太好算的情况下我们来考虑算方案数。我们记录某一维已经走过的步往左最多走了 \(l\)(是负数),往右最多走了 \(r\) ,那么一维暂时不会走出去的位置数量可以表示成可以表示成 \(m[i]=w[i]-r[i]+l[i]\),那么这种情况下不会走出去的方案数是:
\]
其中 \(dt[i]\) 是第 \(i\) 维经过一轮的变化量,\(lim\) 是一个上界表示走了 \(lim\) 轮以后再走就出去了,所以只能够枚举到它,现实告诉我们不能枚举轮数,所以必须要优化。从多项式的角度看,我们把轮数当前自变量去推他的多项式
\]
\(dp[i]\) 就是把所有 \(-dt[i]\times t+m[i]\) 乘起来得到的多项式系数,我们把 \(t\) 看作了自变量,但是系数是一定的。求系数可以暴力多项式乘法(应该不会有人写 \(\tt fft\)),后面的那个东西是老套路的,你去搜 [TJOI]教科书般的亵渎
就会找到一堆方法,我推荐 \(yyb\) 这种用第二类斯特林数的做法(省选不是考烂了):不会点此看 。这样就很舒服了,算这个方案数是 \(O(k^2)\) 的嗯。
然后我们枚举是第 \(i\) 步走了出去,可以用差分,也就是第 \(i-1\) 步没有走出去的方案数减去第 \(i\) 步走出去的方案数,再乘上 \(i\) 就是消耗的步数。
但是还没有考虑大轮的贡献啊,考虑上面我们的计算方式,其本质是前缀和,在第 \(i\) 轮走出去的方案数会在 \(t\in [0,i)\) 时都被算一遍,所以我们直接算一遍方案数然后乘上 \(n\) 就可以了。
\(\tt Unfortunately,\) 第一轮之内是需要单独讨论的,但只是增加了实现的难度,对整体算法影响不大,时间复杂度 \(O(nk^2)\)
#include <cstdio>
#include <iostream>
using namespace std;
const int M = 15;
const int N = 500005;
const int MOD = 1e9+7;
#define int long long
int read()
{
int x=0,f=1;char c;
while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
return x*f;
}
int n,k,inv[M],s[M][M],w[M],a[M],dt[M];
int ans,c[N],d[N],l[M],r[M],z[M];
int Abs(int x)
{
if(x>0) return x;
return -x;
}
int walk(int x,int y)//x维上走一步
{
z[x]+=y;
if(l[x]>z[x] || r[x]<z[x])
{
l[x]=min(l[x],z[x]);
r[x]=max(r[x],z[x]);
return 1;
}
return 0;
}
void init(int k)
{
s[0][0]=inv[0]=inv[1]=1;
for(int i=1;i<=k;i++)//第二类斯特林数
for(int j=1;j<=k;j++)
s[i][j]=(s[i-1][j-1]+s[i-1][j]*j)%MOD;
for(int i=2;i<=k+1;i++)
inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
}
int cal(int k,int n)//这里的n其实是开区间
{
int sum=0,C=1;
for(int i=0;i<=k;i++)//C(n,i+1)*i!*s[k][i]
{
C=C*max(0ll,n-i)%MOD;
sum=(sum+C*inv[i+1]%MOD*s[k][i])%MOD;
}
return sum;
}
int work()
{
int lim=MOD,res=0;
for(int i=1;i<=k;i++)
if(dt[i]) lim=min(lim,(a[i]+dt[i]-1)/dt[i]);
int dp[M]={1};
for(int i=1;i<=k;i++)//暴力多项式乘法
for(int j=i;j>=0;j--)
{
dp[j+1]=(dp[j+1]-dt[i]*dp[j])%MOD;
dp[j]=dp[j]*a[i]%MOD;
}
for(int i=0;i<=k;i++)
res=(res+dp[i]*cal(i,lim))%MOD;
return res;
}
signed main()
{
n=read();k=read();
init(k);
for(int i=1;i<=k;i++)
w[i]=read();
for(int i=1;i<=n;i++)
{
c[i]=read();d[i]=read();
if(walk(c[i],d[i]) && r[c[i]]-l[c[i]]<=w[c[i]])
//第二个判断很重要,因为要保证可能在这一步走出去
{
int x=1;
for(int j=1;j<=k;j++)
if(j!=c[i])
x=(x*max(0ll,w[j]-r[j]+l[j]))%MOD;
ans=(ans+i*x)%MOD;//要在这里走出去只有一种选择
}
}
int fl=1;
for(int i=1;i<=k;i++)
{
fl&=(z[i]==0);
dt[i]=Abs(z[i]);//别忘了
}
if(fl==1)
{
for(int i=1;i<=k;i++)
fl|=(r[i]-l[i]>=w[i]);
if(fl) puts("-1");
else printf("%lld\n",ans);
return 0;
}
for(int i=1;i<=k;i++)
a[i]=max(0ll,w[i]-r[i]+l[i]);
ans=(ans+n*work())%MOD;//第一部分贡献
for(int i=1;i<=n;i++)//第二部分贡献
if(walk(c[i],d[i]) && r[c[i]]-l[c[i]]<=w[c[i]])
{
fl=1;
for(int j=1;j<=k;j++)
if(j!=c[i])
fl&=(w[j]-r[j]+l[j]>0);
if(!fl) continue;
for(int j=0;j<k;j++)
if(j!=c[i]) a[j]=max(0ll,w[j]-r[j]+l[j]);
a[c[i]]=w[c[i]]-r[c[i]]+l[c[i]]+1;//差分差分
ans=(ans+i*work())%MOD;
a[c[i]]=w[c[i]]-r[c[i]]+l[c[i]];
ans=(ans-i*work())%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
}
[NOIP 2020] 微信步数的更多相关文章
- 「NOIP 2020」微信步数(计数)
「NOIP 2020」微信步数(Luogu P7116) 题意: 有一个 \(k\) 维场地,第 \(i\) 维宽为 \(w_i\),即第 \(i\) 维的合法坐标为 \(1, 2, \cdots, ...
- 【Redis面试题】如何使用Redis实现微信步数排行榜?
1. 前言 之前写过一篇博客,讲解的是Redis的5种数据结构及其常用命令,当时有读者评论,说希望了解下这5种数据结构各自的使用场景,不过一直也没来得及写. 碰巧,在3月份找工作面试时,有个面试官先问 ...
- 洛谷 P7116 - [NOIP2020] 微信步数(拉格朗日插值)
洛谷题面传送门 我竟然独立切掉了这道题!incredible! 纪念我逝去的一上午(NOIP 总时长 4.5h,这题做了我整整 4.5h) 首先讲一下现场我想的 80 分的做法,虽然最后挂成了 65 ...
- [luogu7116]微信步数
先判定无解,当且仅当存在一个位置使得移动$n$步后没有结束且仍在原地 暴力枚举移动的步数,记$S_{i}$为移动$i$步(后)未离开范围的点个数,则恰好移动$i$步的人数为$S_{i-1}-S_{i} ...
- NOIP 2020 游记
第一次写比赛游记,请多多指教! I. 考前 由于最近参加了太多太多比赛了,所以没有敲模板题: 考前一周:主要是在做 AtCoder 的题和 xjoi 的模拟赛,相当于恶补了一些套路吧! 考前一天:上午 ...
- NOIP 2020 退役记
躲进你的身体. 哈哈 没想到这么快就轮到我退役啦 以前想想还感觉挺遥远的 这是我最后的机会啦! day-1 晚上照例吃了断头饭 但是没有蛋糕/kk 恭喜 Luckyblock 逃过一劫! (照照片的时 ...
- NOIp 2020
游记 Day-1 我已经开始慌了. 不知道前路如何.不想回文化课.唯一一次机会,可是这几天却一直在颓,不颓就慌. 没心思写题,导致这几天看的题啥都不会.不知道考试当天又会出什么幺蛾子. 啊啊啊,烦. ...
- 【Python可视化】超详细Pyecharts 1.x教程,让你的图表动起来~
前言 pyecharts 是一个用于生成 Echarts 图表的Python库.Echarts是百度开源的一个数据可视化 JS 库,可以生成一些非常酷炫的图表. Pyecharts在1.x版本之后迎来 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
随机推荐
- Kubernets二进制安装(3)之准备签发证书环境
1.在mfyxw50机器上分别下载如下几个文件:cfssl.cfssl-json.cfssl-certinfo cfssl下载连接地址: https://pkg.cfssl.org/R1.2/cfss ...
- 内网域渗透之MS14-068复现(CVE-2014-6324)
在做域渗透测试时,当我们拿到了一个普通域成员的账号后,想继续对该域进行渗透,拿到域控服务器权限.如果域控服务器存在MS14_068漏洞,并且未打补丁,那么我们就可以利用MS14_068快速获得域控服务 ...
- React Slingshot
React Slingshot React 弹弓 https://github.com/coryhouse/react-slingshot https://decoupledkit-react.rea ...
- js types & primitive & object
js types & primitive & object js 数据类型 typeof null // "object" typeof undefined // ...
- mobile chart & f2
mobile chart & f2 https://www.yuque.com/antv/f2/getting-started https://antv.alipay.com/zh-cn/f2 ...
- nvm install node error
nvm install node error ➜ mini-program-all git:(master) nvm install 10.15.3 Downloading and installin ...
- Nodejs 使用 TypeScript
安装依赖 λ yarn add typescript types/node concurrently nodemon wait-on -D 初始化一个 tsconfig.json λ ./node_m ...
- Flutter 使用p5
p5 工作示例 install dependencies: p5: ^0.0.5 main.dart import 'package:flutter/material.dart'; import &q ...
- NGK数字钱包的特点是什么?NGK钱包的优点和缺点是什么?
说起区块链数字资产,那就离不开谈到数字钱包.数字钱包不仅有资产管理的功能,还可以进行资产理财.资产交易,甚至能为公链DAPP导流. 对于NGK公链而言,其数字钱包已然成为了解NGK公链的基础条件.NG ...
- 关于Java中的对象、类、抽象类、接口、继承之间的联系
关于Java中的对象.类.抽象类.接口.继承之间的联系: 导读: 寒假学习JavaSE基础,其中的概念属实比较多,关联性也比较大,再次将相关的知识点复习一些,并理顺其中的关系. 正文: 举个例子:如果 ...