文章目录:

1 模型三要素

三要素其实很简单

  1. 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Module
  2. 在__init__(self)中设置好需要的组件,比如conv,pooling,Linear,BatchNorm等等
  3. 最后在forward(self,x)中用定义好的组件进行组装,就像搭积木,把网络结构搭建出来,这样一个模型就定义好了

我们来看一个例子:

先看__init__(self)函数

def __init__(self):
super(Net,self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.pool1 = nn.MaxPool2d(2,2)
self.conv2 = nn.Conv2d(6,16,5)
self.pool2 = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)

第一行是初始化,往后定义了一系列组件。nn.Conv2d就是一般图片处理的卷积模块,然后池化层,全连接层等等。

定义完这些定义forward函数

def forward(self,x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(-1,16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

x为模型的输入,第一行表示x经过conv1,然后经过激活函数relu,然后经过pool1操作

第三行表示对x进行reshape,为后面的全连接层做准备

至此,对一个模型的定义完毕,如何使用呢?

例如:

net = Net()
outputs = net(inputs)

其实net(inputs),就是类似于使用了net.forward(inputs)这个函数。

2 参数初始化

简单地说就是设定什么层用什么初始方法,初始化的方法会在torch.nn.init中

话不多说,看一个案例:

# 定义权值初始化
def initialize_weights(self):
for m in self.modules():
if isinstance(m,nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m,nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m,nn.Linear):
torch.nn.init.normal_(m.weight.data,0,0.01)
# m.weight.data.normal_(0,0.01)
m.bias.data.zero_()

这段代码的基本流程就是,先从self.modules()中遍历每一层,然后判断更曾属于什么类型,是否是Conv2d,是否是BatchNorm2d,是否是Linear的,然后根据不同类型的层,设定不同的权值初始化方法,例如Xavier,kaiming,normal_等等。kaiming也是MSRA初始化,是何恺明大佬在微软亚洲研究院的时候,因此得名。

上面代码中用到了self.modules(),这个是什么东西呢?

# self.modules的源码
def modules(self):
for name,module in self.named_modules():
yield module

功能就是:能依次返回模型中的各层,yield是让一个函数可以像迭代器一样可以用for循环不断从里面遍历(可能说的不太明确)。

3 完整运行代码

我们用下面的例子来更深入的理解self.modules(),同时也把上面的内容都串起来(下面的代码块可以运行):

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
torch.nn.init.normal_(m.weight.data, 0, 0.01)
# m.weight.data.normal_(0,0.01)
m.bias.data.zero_() net = Net()
net.initialize_weights()
print(net.modules())
for m in net.modules():
print(m)

运行结果:

# 这个是print(net.modules())的输出
<generator object Module.modules at 0x0000023BDCA23258>
# 这个是第一次从net.modules()取出来的东西,是整个网络的结构
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
# 从net.modules()第二次开始取得东西就是每一层了
Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Linear(in_features=400, out_features=120, bias=True)
Linear(in_features=120, out_features=84, bias=True)
Linear(in_features=84, out_features=10, bias=True)

其中呢,并不是每一层都有偏执bias的,有的卷积层可以设置成不要bias的,所以对于卷积网络参数的初始化,需要判断一下是否有bias,(不过我好像记得bias默认初始化为0?不确定,有知道的朋友可以交流)

torch.nn.init.xavier_normal(m.weight.data)
if m.bias is not None:
m.bias.data.zero_()

上面代码表示用xavier_normal方法对该层的weight初始化,并判断是否存在偏执bias,若存在,将bias初始化为0。

4 尺寸计算与参数计算

我们把上面的主函数部分改成:

net = Net()
net.initialize_weights()
layers = {}
for m in net.modules():
if isinstance(m,nn.Conv2d):
print(m)
break

这里的输出m就是:

Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))

这个卷积层,就是我们设置的第一个卷积层,含义就是:输入3通道,输出6通道,卷积核\(5\times 5\),步长1,padding=0.

【问题1:输入特征图和输出特征图的尺寸计算】

之前的文章也讲过这个了,

\(output = \frac{input+2\times padding -kernel}{stride}+1\)

用代码来验证一下这个公式:

net = Net()
net.initialize_weights()
input = torch.ones((16,3,10,10))
output = net.conv1(input)
print(input.shape)
print(output.shape)

初始结果:

torch.Size([16, 3, 10, 10])
torch.Size([16, 6, 6, 6])

第一个维度上batch,第二个是通道channel,第三个和第四个是图片(特征图)的尺寸。

\(\frac{10+2\times 0-5}{1}+1=6\) 算出来的结果没毛病。

【问题2:这个卷积层中有多少的参数?】

输入通道是3通道的,输出是6通道的,卷积核是\(5\times 5\)的,所以理解为6个\(3\times 5\times 5\)的卷积核,所以不考虑bias的话,参数量是\(3\times 5\times 5\times 6=450\),考虑bais的话,就每一个卷积核再增加一个偏置值。(这是一个一般人会忽略的知识点欸)

下面用代码来验证:

net = Net()
net.initialize_weights()
for m in net.modules():
if isinstance(m,nn.Conv2d):
print(m)
print(m.weight.shape)
print(m.bias.shape)
break

输出结果是:

Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
torch.Size([6, 3, 5, 5])
torch.Size([6])

都和预料中一样。

【小白学PyTorch】4 构建模型三要素与权重初始化的更多相关文章

  1. 【小白学PyTorch】6 模型的构建访问遍历存储(附代码)

    文章转载自微信公众号:机器学习炼丹术.欢迎大家关注,这是我的学习分享公众号,100+原创干货. 文章目录: 目录 1 模型构建函数 1.1 add_module 1.2 ModuleList 1.3 ...

  2. 【小白学PyTorch】20 TF2的eager模式与求导

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  3. 【小白学PyTorch】18 TF2构建自定义模型

    [机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs ke ...

  4. 【小白学PyTorch】15 TF2实现一个简单的服装分类任务

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  5. 【小白学PyTorch】5 torchvision预训练模型与数据集全览

    文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.mo ...

  6. 【小白学PyTorch】8 实战之MNIST小试牛刀

    文章来自微信公众号[机器学习炼丹术].有什么问题都可以咨询作者WX:cyx645016617.想交个朋友占一个好友位也是可以的~好友位快满了不过. 参考目录: 目录 1 探索性数据分析 1.1 数据集 ...

  7. 【小白学PyTorch】17 TFrec文件的创建与读取

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

  8. 小白学phoneGap《构建跨平台APP:phoneGap移动应用实战》连载三(通过实例来体验生命周期)

    4.1.2  通过实例来亲身体验Activity的生命周期 上一小节介绍了Activity生命周期中的各个过程,本小节将以一个简单的实例来使读者亲身体验到Activity生命周期中的各个事件. 在Ec ...

  9. 【小白学PyTorch】19 TF2模型的存储与载入

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx64501661 ...

随机推荐

  1. Nginx.conf参数配置详解

    Nginx的配置文件nginx.conf配置详解如下: user nginx nginx; #Nginx用户及组:用户 组.window下不指定 worker_processes 8; #工作进程:数 ...

  2. Html视频播放同时获取当前帧下的图片

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. CSS品控与流程

    精通CSS意味着不仅能写出可用的标记和样式,还能让代码好阅读.方便移植.易维护. 1.外部代码质量:调试CSS 外部代理质量就是用户能体验到的最终结果.主要体现在几个方面. 正确性.CSS属性名都写对 ...

  4. C# ASP 动态添加Html Table行

    用JS放法实现以下效果: 前端文件Questionnaire23.aspx: <%@ Page Title="题目" Language="C#" Mast ...

  5. Vue 事件的$event参数=事件的值

    template <el-table :data="dataList"> <el-table-column label="id" prop=& ...

  6. Webpack 定义process.env的时机

    定义 process.env的时机 如果已经提取了公共配置文件 webpack.common.js 分别定义了开发配置webpack.dev.js和生产配置webpack.prod.js 在webpa ...

  7. YAML简要入门

    这是一篇简单的YAML入门教程,目的是让你知晓什么YAML,以及YAML的基础语法.方便接下来学习如何使用Golang解析YAML.如果想获得更多YAML的知识,请查看http://yaml.org ...

  8. Android ScrollView嵌套ViewPager,嵌套的ViewPager无法显示

    记录:ScrollView嵌套ViewPager,嵌套的ViewPager无法显示 项目中所需要布局:LinearLayout中包含(orientation="vertical") ...

  9. Mybatis 中判断参数长度

    <if test="params.length()!=2">

  10. int ,long , long long , __int64类型的范围

    首先见测试代码(在g++/gcc下运行): #include<iostream> using namespace std; int main() { cout<<sizeof( ...