文章来自微信公众号:【机器学习炼丹术】

文章目录:

0 前言

先缕一缕几个关系:

  • GBDT是gradient-boost decision tree
  • GBDT的核心就是gradient boost,我们搞清楚什么是gradient boost就可以了
  • GBDT是boost中的一种方法,boost还有XGBoost,adaboost。
  • GBDT的基模型一般是CART

1 基本概念

【Boost】 就是让多个弱分类器,通过不同的集成方式,来让多个弱分类器变成一个强分类器。

【gradient-boost】 梯度提升。简单的说,先训练一个弱分类器,然后弱分类器和目标值之间的残差,作为下一个弱分类器训练的目标值。这里有一个非常简单的例子

  • 第一个模型预测年龄,虽然真实值是30岁,第一个模型只给出了20岁的估计值;
  • 第二棵树要预测的就是这个10岁的残差,但是第二棵树只给出了6岁的估计值;
  • 第三棵树预测的是第二棵树的4岁的残差,但是………………(禁止套娃)

2 梯度 or 残差 ?

对于GBDT,网上的很多文章都没有讲清楚,学习梯度还是学习残差?从上面的那个例子来看,是学习残差的。

其实,从来GBDT都是学习梯度的,学习残差只是学习梯度的一个特例!

如果我们是在做一个回归任务(就像是上面例子中预测年龄),采用平方损失:\(loss = \frac{1}{2}\sum^n_i{(y_i-\hat{y_i})^2}\)

其中\(y_i\)是真实数值,\(\hat{y_i}\)是模型预测的值。

然后想求取这个关于\(\hat{y_i}\)的梯度,那就是:

\(\frac{\partial loss}{\partial \hat{y^i}}=(-1)(y_i-\hat{y_i})\)

所以残差在平方损失的情况下,就是等于负梯度,所以两者一回事。

3 残差过于敏感

对于数据不干净,没有清晰掉异常值的数据样本。使用平方损失对异常值过于敏感了

敏感就是因为,异常值的损失过大了,导致下一个弱分类器就会强行拟合这个5.445的样本,拟合异常值就意味着弱化了泛化能力,从而整体精度就可能会下降。

所以,这里在回归问题中,也可以考虑使用下面的两个损失函数:

  • Absolute loss:

    \(loss=|y-\hat{y}|\)

  • Huber loss:

    这个是设置一个阈值,当\(|y-\hat{y}|\)小于这个阈值的时候,采用平方损失,当\(|y-\hat{y}|\)大于这个阈值的时候,采用类似于绝对损失的线性损失:



    这里看一下huber loss的函数图像:



    就是一个平方损失,一个线性损失。

然后看一下平方损失,绝对损失,huber损失对于异常值的容忍程度:


【小小的总结】

GBDT是基于boosting的思想,串行地构造多棵决策树来进行数据的预测,它是在损失函数所在的函数空间中做梯度下降,即把待求的决策树模型当作参数,每轮迭代都去拟合损失函数在当前模型下的负梯度,从而使得参数朝着最小化损失函数的方向更新。

【现在还用吗?】

学肯定是要学的,因为GBDT是非常经典的集成模型,知道了可以扩充知识面。但是其实在2010年横霸大数据竞赛的,现在10年过去了,在竞赛中已经是老古董了。

【GBDT vs Adaboost】

Adaboost是boost集成的另一个非常经典的算法。Adaboost只能采用指数损失的二分类任务,而GBDT可以使用各种可微分的损失函数来处理多分类、回归等任务。


4 两个基模型的问题

【问题:为什么GBDT模型都会使用CART(分类和回归树)来作为基模型呢?】

这与决策树算法自身的优点有很大的关系。决策树可以认为是if-then规则的集合,易于理解,可解释性强,预测速度快 。同时,决策树算法相比于其他的算法需要更少的特征工程,比如可以不用做特征标准化,可以很好的处理字段缺失的数据,也可以不用关心特征间是否相互依赖 等。决策树能够自动组合多个特征,它可以毫无压力地处理特征间的交互关系并且是非参数化 的,因此你不必担心异常值或者数据是否线性可分(举个例子,决策树能轻松处理好类别A在某个特征维度x的末端,类别B在中间,然后类别A又出现在特征维度x前端的情况)不过,单独使用决策树算法时,有容易过拟合缺点。所幸的是,通过各种方法(比如剪枝、最大树深度、最小叶子样本数量、正则项等),抑制决策树的复杂性,降低单颗决策树的拟合能力,再通过梯度提升的方法集成多个决策树,最终能够很好的解决过拟合的问题。由此可见,梯度提升方法和决策树学习算法可以互相取长补短,是一对完美的搭档。


【还有什么抑制单棵决策树的复杂度的方法?换言之,决策树的避免过拟合的方法?】

  1. 限制树的最大深度
  2. 限制叶子节点的最少样本数量
  3. 限制节点分裂时的最少样本数量
  4. 吸收bagging的思想对训练样本采样(subsample)在学习单颗决策树时只使用一部分训练样本(样本采样)
  5. 借鉴随机森林的思路在学习单颗决策树时只采样一部分特征(特征采样,同样是bagging的思想)
  6. 在目标函数中添加正则项惩罚复杂的树结构等。

【小白学AI】GBDT梯度提升详解的更多相关文章

  1. 【小白学AI】XGBoost 推导详解与牛顿法

    文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 作者前言 2 树模型概述 3 XGB vs GBDT 3.1 区别1:自带正则项 3.2 ...

  2. 【小白学AI】XGBoost推导详解与牛顿法

    文章来自微信公众号:[机器学习炼丹术] 目录 1 作者前言 2 树模型概述 3 XGB vs GBDT 3.1 区别1:自带正则项 3.2 区别2:有二阶导数信息 3.3 区别3:列抽样 4 XGB为 ...

  3. 【小白学PyTorch】11 MobileNet详解及PyTorch实现

    文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2 ...

  4. 【小白学AI】随机森林 全解 (从bagging到variance)

    文章转自公众号[机器学习炼丹术],关注回复"炼丹"即可获得海量免费学习资料哦! 目录 1 随机森林 2 bagging 3 神秘的63.2% 4 随机森林 vs bagging 5 ...

  5. 【小白学PyTorch】13 EfficientNet详解及PyTorch实现

    参考目录: 目录 1 EfficientNet 1.1 概述 1.2 把扩展问题用数学来描述 1.3 实验内容 1.4 compound scaling method 1.5 EfficientNet ...

  6. 【小白学PyTorch】12 SENet详解及PyTorch实现

    文章来自微信公众号[机器学习炼丹术].我是炼丹兄,有什么问题都可以来找我交流,近期建立了微信交流群,也在朋友圈抽奖赠书十多本了.我的微信是cyx645016617,欢迎各位朋友. 参考目录: @ 目录 ...

  7. 机器学习 | 详解GBDT梯度提升树原理,看完再也不怕面试了

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第30篇文章,我们今天来聊一个机器学习时代可以说是最厉害的模型--GBDT. 虽然文无第一武无第二,在机器学习领域并没有 ...

  8. 一文读懂:GBDT梯度提升

    先缕一缕几个关系: GBDT是gradient-boost decision tree GBDT的核心就是gradient boost,我们搞清楚什么是gradient boost就可以了 GBDT是 ...

  9. GBDT(梯度提升树)scikit-klearn中的参数说明及简汇

    1.GBDT(梯度提升树)概述: GBDT是集成学习Boosting家族的成员,区别于Adaboosting.adaboosting是利用前一次迭代弱学习器的误差率来更新训练集的权重,在对更新权重后的 ...

随机推荐

  1. Skill 脚本演示 ycChangeLayerToEntry.il

    https://www.cnblogs.com/yeungchie/ ycChangeLayerToEntry.il 快速切换选中 figs 的 lpp(Layer-Purpose Pair). 回到 ...

  2. 发送ajax请求时候注意的问题

    1.在发送ajax请求一般都是默认为异步,就是不去等待后台响应直接可以继续发送, 但这样会有时候遇到一些问题,无法获得后台的响应参数, 所以在你打开编辑弹出框完成数据编辑后无法刷新页面, 这时候可能存 ...

  3. Vue通过Blob对象实现导出Excel功能

    不同的项目有不同的导出需求,有些只导出当前所显示结果页面的表格进入excel,这个时候就有很多插件,比如vue-json-excel或者是Blob.js+Export2Excel.js来实现导出Exc ...

  4. tensorboard报错:AttributeError: ‘Value’ object has no attribute ‘metadata’

    tensorboard的网页可以访问,但是只能观察到graph数据,但是观察不到scalars数据. 原因:tensorflow版本需>=1.3.0 解决方法:升级tensorflow

  5. 十分钟搭建自己的私有NuGet服务器-BaGet

    目录 前言 开始 搭建BaGet 上传程序包 在vs中使用 其他 最后 前言 NuGet是用于微软.NET(包括 .NET Core)开发平台的软件包管理器.NuGet能够令你在项目中添加.移除和更新 ...

  6. 安装Scrapy过程中遇到的几个问题总结

    安装Scrapy 1.https://www.lfd.uci.edu/~gohlke/pythonlibs/下载 Twisted 安装 Twisted-19.10.0-cp37-cp37m-win_a ...

  7. csapp第六章笔记-存储器结构

    目录 随机访问存储器(Random-Access-Memory) 静态RAM 动态RAM 增强的DRAM 非易失性存储器 磁盘存储 磁盘构成 磁盘容量 磁盘操作 逻辑磁盘块 访问磁盘和连接I/O设备 ...

  8. C#LeetCode刷题之#409-最长回文串(Longest Palindrome)

    问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3788 访问. 给定一个包含大写字母和小写字母的字符串,找到通过这 ...

  9. 自己动手编写一个Mybatis插件:Mybatis脱敏插件

    1. 前言 在日常开发中,身份证号.手机号.卡号.客户号等个人信息都需要进行数据脱敏.否则容易造成个人隐私泄露,客户资料泄露,给不法分子可乘之机.但是数据脱敏不是把敏感信息隐藏起来,而是看起来像真的一 ...

  10. MyKTV系统项目的感想

    不粉身碎骨,何以脱胎换骨! 3月11号,我们迎来S1的尾巴.这期间有温暖,默契,有项目.一切刚刚好.刚刚正式接到KTV这个微微型的项目的时候,还是很害怕的,虽然老师在前两天就已经提到也讲到,KTV系统 ...