Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt
of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways. 



Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical
tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144

51205

这题可以用状压dp做,用二进制表示每一行的状态,横着的11表示横放,竖着的01表示竖放,然后先初始化第一行的可行状态,因为第一行前没有空行,所以转化后的二进制中如果有奇数个1连一起一定是不可行状态.但对于大于1的行来说,因为可能会有前面一行的矩形竖着放,所以奇数个1连在一起可能是可行的,所以需要另外的判断。可以发现,状态转移过程中,大于1的每一行都要满足两个条件,一个是行内不能有空余的位置(可以用|来实现,很神奇啊),另一个是如果去掉前一行竖着放的矩形遗留在当前行的1,当前状态一定也是可行状态(可以用&来实现,动手画一下),这样就可以把动态转移方程写出来了,我们记dp[i][state]为第i行state状态下的总方案数,那么dp[i][state]=dp[i][state]+dp[i-1][state'],所以最后要求的就是dp[n][(1<<m)-1].

#include<stdio.h>
#include<string.h>
#define ll long long
int kexing[5000],n,m;
ll dp[15][5000];
int panduan(int x)
{
int i,j,tot=0;
while(x>0){
if(x%2==1){
tot++;x=x/2;
}
else{
if(tot%2==1)return 0;
tot=0;x=x/2;
}
}
if(tot%2==1)return 0;
else return 1;
} int check(int x,int y)
{
int i,j,t=(1<<m)-1;
if(!( (x|y)==t ) )return 0;
return kexing[x&y];
} int main()
{
int i,j,k;
while(scanf("%d%d",&n,&m)!=EOF)
{
if(n==0 && m==0)break;
memset(dp,0,sizeof(dp));
for(i=0;i<(1<<m);i++){
if(panduan(i)){
kexing[i]=1;dp[1][i]=1;
}
else kexing[i]=0;
}
for(i=2;i<=n;i++){
for(j=0;j<(1<<m);j++){
for(k=0;k<(1<<m);k++){
if(check(j,k)){
dp[i][j]=dp[i][j]+dp[i-1][k];
}
}
}
}
printf("%lld\n",dp[n][(1<<m)-1]);
}
return 0;
}

poj2411 Mondriaan's Dream (用1*2的矩形铺)的更多相关文章

  1. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  2. poj2411 Mondriaan's Dream【状压DP】

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20822   Accepted: 117 ...

  3. [Poj2411]Mondriaan's Dream(状压dp)(插头dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 18096   Accepted: 103 ...

  4. POJ1185 炮兵阵地 和 POJ2411 Mondriaan's Dream

    炮兵阵地 Language:Default 炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34008 Accepted ...

  5. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  6. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  7. POJ2411 Mondriaan's Dream

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

  8. POJ2411 Mondriaan's Dream 轮廓线dp

    第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...

  9. POJ2411 - Mondriaan's Dream(状态压缩DP)

    题目大意 给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案? 题解 刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急 ...

随机推荐

  1. ctfhub技能树—sql注入—报错注入

    打开靶机 payload 1 Union select count(*),concat((查询语句),0x26,floor(rand(0)*2))x from information_schema.c ...

  2. 一文读懂 Kubernetes APIServer 原理

    前言 整个Kubernetes技术体系由声明式API以及Controller构成,而kube-apiserver是Kubernetes的声明式api server,并为其它组件交互提供了桥梁.因此加深 ...

  3. 1.2V升压到3V和3.3V的升压芯片

    1.2V镍氢电池升压到3V和3.3V输出,1.2V升压3V,1.2V升压3.3V稳压输出供电的芯片. PW5100 是一款低静态电流.达效率. PFM 模式控制的同步升压变换器. PW5100 所需的 ...

  4. 如何在 Blazor WebAssembly中 使用 功能开关

    微软Azure 团队开发的 功能管理 (Feature Management) 包 Microsoft.FeatureManagement可用于实现 功能开关,可以通过 功能开关 特性动态的改变应用程 ...

  5. 面试常问的ArrayQueue底层实现

    public class ArrayQueue<T> extends AbstractList<T>{ //定义必要的属性,容量.数组.头指针.尾指针 private int ...

  6. 阿里云VOD(二)

    一.准备工作 1.设置不转码 测试之前设置默认"不转码",以节省开发成本 2.找到子账户的AccessKey ID 3.给子账户添加授权 AliyunVODFullAccess 4 ...

  7. FPGA仿真的概念及语法特点

    以下是特权同学<FPGA设计+实战演练>书中的描述:      一个正规的设计需要花费在验证上的工作量,往往可能会占到整个开发流程的70%左右.验证通常分为仿真验证和板机验证.      ...

  8. linux Jumpserver跳板机 /堡垒机详细部署

    关于跳板机/堡垒机的介绍: 跳板机的定义: 跳板机就是一台服务器,开发或运维人员在维护过程中首先要统一登录到这台服务器,然后再登录到目标设备进行维护和操作: 跳板机缺点: 没有实现对运维人员操作行为的 ...

  9. 关于redis搭建环境

    首先,window键+r 输入cmd进入dos命名窗口,我的redis是装在了d盘,so我得输入cd:或者d:进入d盘,cd\redis文件夹路径,这样的话,直接输入  redis-server -- ...

  10. There are only two hard things in Computer Science: cache invalidation and naming things.

    TwoHardThings https://martinfowler.com/bliki/TwoHardThings.html https://github.com/cch123/golang-not ...