ZSTU 4241 圣杯战争(ST表+二分)
题目链接 ZSTU 4241
问题转化为有很多区间,现在每次给定一个区间求这个区间和之前所有区间中的某一个的交集的最大长度。
强制在线。
首先我们把所有的区间预处理出来。
然后去重(那些被包含的小区间可以去掉),再根据左端点升序排序。
这样的话这些区间的右端点也是严格升序的。
现在对于给定的$[x, y]$
所有区间大概可以分成三类。
$1$、左端点落在$[1, x - 1]$,对于这类区间查询右端点最大值即可。
$2$、右端点落在$[y + 1, n]$,对于这类区间查询左端点最小值即可。
$3$、除了上面两种的其他区间,对于这类区间查询区间长度最大值即可。
$1$、$2$直接利用单调性,二分找到满足条件的位置即可。
$3$的话……我选择了$ST$表。
最后答案不能超过给定区间的长度。
时间复杂度$O(nlogn)$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 2e5 + 10; struct node{
int x, y;
friend bool operator < (const node &a, const node &b){
return a.x == b.x ? a.y > b.y : a.x < b.x;
}
} b[N], c[N]; LL a[N], s[N], p[N];
int pos[N];
int n, m, q;
int T;
int num, cnt, ans;
int f[N][22];
int lg[N]; inline LL calc(int l, int r){ return s[r] - s[l - 1]; } inline int solve(int l, int r){
if (l > r) return 0;
int k = lg[r - l + 1];
return max(f[l][k], f[r - (1 << k) + 1][k]);
} void work(){
rep(i, 1, cnt) f[i][0] = c[i].y - c[i].x + 1;
rep(j, 1, 20) rep(i, 1, cnt)
if ((i + (1 << j) - 1) <= cnt) f[i][j] = max(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);
} int main(){ lg[1] = 0; rep(i, 2, 2e5) lg[i] = lg[i >> 1] + 1; scanf("%d", &T);
while (T--){
scanf("%d%d%d", &n, &m, &q);
rep(i, 1, n) scanf("%lld", a + i);
s[0] = 0;
rep(i, 1, n) s[i] = s[i - 1] + a[i];
rep(i, 1, m) scanf("%d", pos + i);
rep(i, 1, m) scanf("%lld", p + i);
num = 0;
rep(i, 1, m){
if (p[i] < a[pos[i]]) continue;
int l = pos[i], r = n;
while (l + 1 < r){
int mid = (l + r) >> 1;
if (calc(pos[i], mid) <= p[i]) l = mid;
else r = mid - 1;
} int t;
if (calc(pos[i], r) <= p[i]) t = r; else t = l;
++num;
b[num].x = pos[i], b[num].y = t;
} rep(i, 1, m){
if (p[i] < a[pos[i]]) continue;
int l = 1, r = pos[i];
while (l + 1 < r){
int mid = (l + r) >> 1;
if (calc(mid, pos[i]) <= p[i]) r = mid;
else l = mid + 1;
} int t;
if (calc(l, pos[i]) <= p[i]) t = l; else t = r;
++num;
b[num].x = t, b[num].y = pos[i];
} sort(b + 1, b + num + 1);
cnt = 0;
for (int i = 1, j; i <= num; ){
j = i + 1;
while (j <= num && b[j].y <= b[i].y) ++j;
c[++cnt] = b[i];
i = j;
} memset(f, 0, sizeof f);
work(); ans = 0;
while (q--){
int x, y;
scanf("%d%d", &x, &y);
x ^= ans;
y ^= ans;
if (x > y) swap(x, y); ans = 0;
int X, Y;
if (c[1].x >= x) X = 1;
else{
int l = 1, r = cnt;
while (l + 1 < r){
int mid = (l + r) >> 1;
if (c[mid].x < x) l = mid; else r = mid - 1;
} if (c[r].x < x){ X = r + 1; ans = max(ans, c[r].y - x + 1);}
else{ X = l + 1; ans = max(ans, c[l].y - x + 1);}
} if (c[cnt].y <= y) Y = cnt;
else{
int l = 1, r = cnt;
while (l + 1 < r){
int mid = (l + r) >> 1;
if (c[mid].y > y) r = mid; else l = mid + 1;
} if (c[l].y > y){ Y = l - 1; ans = max(ans, y - c[l].x + 1);}
else{ Y = r - 1; ans = max(ans, y - c[r].x + 1); }
} ans = max(ans, solve(X, Y));
ans = min(ans, y - x + 1);
printf("%d\n", ans);
}
} return 0;
}
ZSTU 4241 圣杯战争(ST表+二分)的更多相关文章
- 「ZJOI2018」胖(ST表+二分)
「ZJOI2018」胖(ST表+二分) 不开 \(O_2\) 又没卡过去是种怎么体验... 这可能是 \(ZJOI2018\) 最简单的一题了...我都能 \(A\)... 首先我们发现这个奇怪的图每 ...
- 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分
4310: 跳蚤 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 180 Solved: 83[Submit][Status][Discuss] De ...
- BZOJ4556 [Tjoi2016&Heoi2016]字符串 SA ST表 二分答案 主席树
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4556.html 题目传送门 - BZOJ4556 题意 给定一个长度为 $n$ 的字符串 $s$ . ...
- hdu5289 ST表+二分
用裸的St表+暴力枚举查询时稳TLE的,可以枚举每个区间的起点+二分满足条件的区间右端,这样复杂度是O(nlogn) #include<iostream> #include<cstr ...
- luoguP5108 仰望半月的夜空 [官方?]题解 后缀数组 / 后缀树 / 后缀自动机 + 线段树 / st表 + 二分
仰望半月的夜空 题解 可以的话,支持一下原作吧... 这道题数据很弱..... 因此各种乱搞估计都是能过的.... 算法一 暴力长度然后判断判断,复杂度\(O(n^3)\) 期望得分15分 算法二 通 ...
- 2016多校联合训练1 D题GCD (ST表+二分)
暑假颓废了好久啊...重新开始写博客 题目大意:给定10w个数,10w个询问.每次询问一个区间[l,r],求出gcd(a[l],a[l+1],...,a[r])以及有多少个区间[l',r']满足gcd ...
- 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)
题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...
- GCD(st表+二分)
GCD Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- Codeforces 713D Animals and Puzzle(二维ST表+二分答案)
题目链接 Animals and Puzzle 题意 给出一个1e3 * 1e3的01矩阵,给出t个询问,每个询问形如x1,y1,x2,y2 你需要回答在以$(x1, y1)$为左上角,$(x1, ...
随机推荐
- Robot Framework user guide
http://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html
- MySQL_8.0.15_Windows10_X64 安装教程
最近学习的内容涉及到MySQL的知识,所以安装一个MySQL非常有必要,参考别人的教程安装过程还算顺利,其中遇到了一些问题查了一些也解决了,这里把整个安装过程梳理一遍,给大家一个参考. 我手里的电脑是 ...
- 【laravel】Disabling CSRF for Specific Routes - Laravel 5
原文 http://www.camroncade.com/disable-csrf-for-specific-routes-laravel-5/ Disabling CSRF for Specific ...
- selenium+phantomjs爬取bilibili
selenium+phantomjs爬取bilibili 首先我们要下载phantomjs 你可以到 http://phantomjs.org/download.html 这里去下载 下载完之后解压到 ...
- 【HIHOCODER 1182】欧拉路·三
描述 小Hi和小Ho破解了一道又一道难题,终于来到了最后一关.只要打开眼前的宝箱就可以通关这个游戏了. 宝箱被一种奇怪的机关锁住: 这个机关是一个圆环,一共有2^N个区域,每个区域都可以改变颜色,在黑 ...
- 计蒜客 The 2018 ACM-ICPC Chinese Collegiate Programming Contest Rolling The Polygon
include <iostream> #include <cstdio> #include <cstring> #include <string> #i ...
- POJ 3281 网络流 拆点 Dining
题意: 有F种食物和D种饮料,每头牛有各自喜欢的食物和饮料,而且每种食物或者饮料只能给一头牛. 求最多能有多少头牛能同时得到它喜欢的食物或者饮料. 分析: 把每个牛拆点,中间连一条容量为1的边,保证一 ...
- ogre3D学习基础6---场景管理器的使用
场景管理器的使用 最常使用的坐标系统空间(同时也是Ogre程序所能提供的)即是世界空间(World).父节点空间(Parent)以及本地空间(Local). 1.世界空间 就是物体所存在的地方,当我们 ...
- TCP 中的三次握手和四次挥手
Table of Contents 前言 数据报头部 三次握手 SYN 攻击 四次挥手 半连接 TIME_WAIT 结语 参考链接 前言 TCP 中的三次握手和四次挥手应该是非常著名的两个问题了,一方 ...
- web自动化之selenium
一.Selenium(http://www.selenium.org/) Web自动化测试工具.它支持各种浏览器,包括Chrome,Safari,Firefox等主流界面式浏览器,如果你在这些浏览器里 ...