http://acm.hdu.edu.cn/showproblem.php?pid=1098

其实一开始猜测只要验证x=1的时候就行了,但是不知道怎么证明。

题解表示用数学归纳法,假设f(x)成立,证明f(x+1)成立需要什么条件。

代入之后发现有很多二项式系数,导致他们都是65的倍数,剩下的恰好就是 f(x) 和 18+ka 。

那么只需要找到最小的a使得 18+ka是65的倍数。

题解说,毕竟65毕竟小,可以枚举a。因为a+65与a的对65的余数是一样的,所以只要枚举0到64就可以了。

我的想法是用扩展欧几里得求这个的解。

首先由裴蜀定理 ax+by=c 有解,当且仅当gcd(a,b)|c

那么 18+ka=65t 即 -ka+65t=18 求a的最小非负整数解。套方程的模板。

忘记写解方程的返回值导致返回一个任意值,有毒。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; //扩展欧几里得算法:返回 g=gcd(a,b) ,以及对应的等式 ax+by=g 的解
ll exgcd(ll a,ll b,ll &x,ll &y) {
if(!a&&!b)
return -1;
if(!b) {
x=1,y=0;
return a;
}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
} bool Liner_qu(ll a, ll b, ll c, ll &x, ll &y) {
if(a==0) {
if(b==0) {
if(c==0) {
x=0;
y=0;
return true;
} else {
return false;
}
}
if(c%b==0) {
x=0;
y=c/b;
return true;
//0x+by=c
} else
return false;
}
if(b==0) {
if(c%a==0) {
x=c/a;
y=0;
return true;
//ax+0y=c
} else {
return false;
}
}
ll g=__gcd(a,b);
if(c%g){
return false;
}
//裴蜀定理 ll k=c/g;
exgcd(a,b,x,y);
//ax+by=g的解
x *= k; // 任意一解
y *= k; ll tx = x; x %= b; //最小解
if(x<0)
x += abs(b); //最小非负整数解
k=(tx-x)/b;
y += k*a; //对应的y的解
return true;
} ll F(int k) {
int a;
{
if(k%5==0||k%13==0)
return -1;
else {
a=1;
while((k*a+18)%65!=0) {
a++;
}
return a;
}
}
} ll G(int k) {
ll a,b,c,x,y;
a=-k;
b=65;
c=18; bool flag=Liner_qu(a,b,c,x,y); if(flag) {
return x;
} else {
return -1;
}
} int main() {
int k;
while(cin>>k) {
ll a,b,c,x,y;
a=-k;
b=65;
c=18; bool flag=Liner_qu(a,b,c,x,y); if(flag){
cout<<x<<endl;
}
else{
cout<<"no"<<endl;
}
} /*for(int k=1; k<=10000; k++) {
ll s1=F(k);
ll s2=G(k);
if(s1!=s2) {
cout<<"k="<<k<<endl;
cout<<s1<<endl<<s2<<endl;
}
}*/
}

HDU - 1098 - Ignatius's puzzle - ax+by=c的更多相关文章

  1. HDU 1098 Ignatius's puzzle

    http://acm.hdu.edu.cn/showproblem.php?pid=1098 题意 :输入一个K,让你找一个a,使得f(x)=5*x^13+13*x^5+k*a*x这个f(x)%65等 ...

  2. 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)

    Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...

  3. HDU 1098 Ignatius's puzzle(数学归纳)

    以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...

  4. 题解报告:hdu 1098 Ignatius's puzzle

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098 题目中文是这样的: 伊格内修斯在数学上很差,他遇到了一个难题,所以他别无选择,只能上诉埃迪. 这 ...

  5. HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法

    题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...

  6. HDOJ 1098 Ignatius's puzzle

    Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no choice bu ...

  7. hdu 1098 Ignatius's puzz

    有关数论方面的题要仔细阅读,分析公式. Problem Description Ignatius is poor at math,he falls across a puzzle problem,so ...

  8. 【HDOJ】1098 Ignatius's puzzle

    数学归纳法,得证只需求得使18+ka被64整除的a.且a不超过65. #include <stdio.h> int main() { int i, j, k; while (scanf(& ...

  9. 数学: HDU1098 Ignatius's puzzle

    Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. EasyPusher手机直播推送是如何实现后台直播推送的

    本文由EasyDarwin开源团队成员John提供:http://blog.csdn.net/jyt0551/article/details/52276062 EasyPusher Android是使 ...

  2. LINUX上一个命令计算PI

    Linux上一个命令计算PI – 笑遍世界 http://smilejay.com/2017/11/calculate-pi-with-linux-command/ [root@d1 goEcho]# ...

  3. 配置hadoop用户SSH无密码登陆 的2种方式 落脚点是 可以ssh免密进入的主机名写入动作发出主机的 known_hosts,而被无密进入主机的authorized_keys文件 免密登录

    cat /proc/versionLinux version 3.10.0-327.el7.x86_64 (builder@kbuilder.dev.centos.org) (gcc version ...

  4. 【R】R语言生成随机数

    1.概述 作为一种语言进行统计分析,R有一个随机数生成各种统计分布功能的综合性图书馆.R语言可以针对不同的分布,生成该分布下的随机数.其中,有许多常用的个分布可以直接调用.本文简单介绍生成常用分布随机 ...

  5. apk下载与安装

    public class MainActivity extends Activity { private File apkFile; @Override protected void onCreate ...

  6. [coci2011]友好数对 容斥

    无趣的小x在玩一个很无趣的数字游戏.他要在n个数字中找他喜欢友好数对.他对友好数对的定义是:如果有两个数中包含某一个以上相同的数位(单个数字),这两个数就是友好数对.比如:123和345 就是友好数对 ...

  7. 脚踏实地学C#5-扩展方法

    扩展方法(Extension Method) MSDN定义:能够向现有类型“添加”方法,而无需创建新的派生类型.重新编译或以其他方式修改原始类型. 扩展方法须知: 1.扩展方法声明所在的类必须被声明为 ...

  8. log4j 配置文件详解

    [1]从零开始 a). 新建Java Project>>新建package>>新建java类: b). import jar包(一个就够),这里我用的是log4j-1.2.14 ...

  9. hadoop2.X集群安装与应用

    可参考此文档:hadoop(2.x)以hadoop2.2为例完全分布式最新高可靠安装文档(非常详细)http://www.aboutyun.com/thread-7684-1-1.html 步骤一:下 ...

  10. BZOJ_3729_Gty的游戏_博弈论+splay+dfs序

    BZOJ_3729_Gty的游戏_博弈论+splay+dfs序 Description 某一天gty在与他的妹子玩游戏. 妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子 ...