题意:给定n和a[i](i=0..4),求所有n位5进制数中没有前导0且i出现的次数不超过a[i]的数的个数

2<=n<=15000,0<=a[i]<=3e4

思路:设f(n,a,b,c,d,e)为可以含前导0的答案

则ANS=f(n,a,b,c,d,e)-f(n-1,a-1,b,c,d,e)

考虑对每一种数字出现的情况进行容斥

设dp[i][j]为当前到第i位,数字出现的情况为j,至少有一种数字超过了限制次数的方案数

转移有两种:已经出现过的数字可以再出现一次,没有出现过的数字先强行取a[i]+1个再用组合数计算方案转移

 #include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef vector<int> VI;
#define fi first
#define se second
#define MP make_pair
#define N 31000
#define M 40
#define MOD 1000000007
#define eps 1e-8
#define pi acos(-1)
#define oo 1100000000 ll dp[N][M],fac[N],inv[N],exf[N];
int cnt[N],a[N],n,sta; void add(ll &x,ll y)
{
x+=y;
if(x<) x+=MOD;
if(x>=MOD) x-=MOD;
} ll c(int x,int y)
{
return fac[x]*exf[y]%MOD*exf[x-y]%MOD;
} int lowbit(int x)
{
return x&(-x);
} int calc()
{
memset(dp,,sizeof(dp));
for(int i=;i<=sta;i++)
if(cnt[i^sta]&) dp[][i]=MOD-; //容斥系数
else dp[][i]=;
for(int i=;i<=n;i++)
for(int j=;j<=sta;j++)
{
add(dp[i][j],dp[i-][j]*cnt[j]%MOD);
for(int k=;k<=;k++)
if(!((j>>k)&)&&a[k]<i) add(dp[i][j|(<<k)],dp[i--a[k]][j]*c(i-,a[k])%MOD); //当前数字取a[k]+1个
}
return dp[n][sta];
} int main()
{
//freopen("hdoj5519.in","r",stdin);
//freopen("hdoj5519.out","w",stdout);
int cas;
scanf("%d",&cas);
fac[]=;
for(int i=;i<N;i++) fac[i]=fac[i-]*i%MOD;
inv[]=inv[]=exf[]=exf[]=;
for(int i=;i<N;i++)
{
inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD;
exf[i]=exf[i-]*inv[i]%MOD;
}
cnt[]=;
for(int i=;i<N;i++) cnt[i]=cnt[i-lowbit(i)]+;
for(int v=;v<=cas;v++)
{
scanf("%d",&n);
for(int i=;i<=;i++) scanf("%d",&a[i]);
sta=(<<)-;
ll ans=calc();
if(a[])
{
n--; a[]--;
ans=(ans-calc()+MOD)%MOD;
}
printf("Case #%d: %I64d\n",v,ans);
}
return ;
}

【HDOJ5519】Kykneion asma(状压DP,容斥)的更多相关文章

  1. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  2. bzoj2669 [cqoi2012]局部极小值 状压DP+容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2669 题解 可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2 ...

  3. 一本通 1783 矩阵填数 状压dp 容斥 计数

    LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...

  4. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  5. HDU 5838 (状压DP+容斥)

    Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...

  6. [清华集训2015 Day1]主旋律-[状压dp+容斥]

    Description Solution f[i]表示状态i所代表的点构成的强连通图方案数. g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数. g是用来容斥的. 先用 ...

  7. NOIp模拟赛 巨神兵(状压DP 容斥)

    \(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...

  8. uoj#37. 【清华集训2014】主旋律(状压dp+容斥)

    传送门 第一眼容斥,然后我就死活容不出来了-- 记\(f_i\)为点集\(i\)中的点强联通的方案数,那么就是总的方案数减去使\(i\)不连通的方案数 如果\(i\)不连通的话,我们可以枚举缩点之后拓 ...

  9. BZOJ 3812 主旋律 (状压DP+容斥) + NOIP模拟赛 巨神兵(obelisk)(状压DP)

    这道题跟另一道题很像,先看看那道题吧 巨神兵(obelisk) 题面 欧贝利斯克的巨神兵很喜欢有向图,有一天他找到了一张nnn个点mmm条边的有向图.欧贝利斯克认为一个没有环的有向图是优美的,请问这张 ...

  10. bzoj2560串珠子 状压dp+容斥(?)

    2560: 串珠子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 515  Solved: 348[Submit][Status][Discuss] ...

随机推荐

  1. 27.28. VUE学习之--事件修饰符之stop&capture&self&once实例详解

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. python3 包的发布

    发布流程大概如下 1. 首先需要有一个python包,就是一个文件夹,但是此文件夹下面有__init__.py文件,里面内容是 现在要发布包TestMsg,这就是一个python包.在同级目录下新建s ...

  3. docker 学习(1)

    Docker与容器和虚拟机 Docker跟虚拟机有什么区别啊?这个问题可以拆成两部分.因为Docker并不是什么完全独创的技术,而是属于很早便有了的容器技术,所以第一个问题就是容器与虚拟机的区别?同属 ...

  4. HDU:2846-Repository

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2846 Repository Time Limit: 2000/1000 MS (Java/Others) ...

  5. 10,Scrapy简单入门及实例讲解

    Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架. 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以 ...

  6. 1026: [SCOI2009]windy数(数位dp)

    1026: [SCOI2009]windy数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9016  Solved: 4085[Submit][Sta ...

  7. java的类加载器体系结构和双亲委派机制

    类加载器将字节码文件加载到内存中,同时在方法区中生成对应的java.land.class对象  作为外部访问方法区的入口. 类加载器的层次结构: 引导类加载器<-------------扩展类加 ...

  8. datagrid的右键菜单

    1. 2.右键菜单,主要是用onRowContextMenu:function(e,index,row){}方法来实现 onRowContextMenu:function(e,index,row){ ...

  9. Core Java的那点事儿之ArrayList

    Core Java的那点事儿之ArrayList 万丈高楼平地起,Java基础要拿起.今天就从我看的Core Java里找了些小基础点来分享一下. 首先隆重介绍一下专业级龙套演员---Employee ...

  10. 新博客 http://kunyashaw.com/

    感谢博客园. 请关注我的新博客: http://kunyashaw.com/