Codeforces Round #441 Div. 2 A B C D
题目链接
A. Trip for Meal
题意
三个点之间两两有路径,分别长为\(a,b,c\),现在从第一个点出发,走\(n-1\)条边,问总路径最小值。
思路
记起始点相邻的边为\(a,b\),相对的边为\(c\).
首先肯定走\(a,b\)中的最小值(不妨设为\(a\)),到达另一个顶点。那么这个顶点所连的两条边\(a,c\)中必然有一个是\(a,b,c\)三者中的最小值,否则最小值就为\(b\),与初始的选择矛盾。
于是接下来只需要在最小值的路上反复走即可。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int main() {
int n, a ,b,c;
scanf("%d", &n);
--n;
scanf("%d%d%d", &a,&b,&c);
if (n==0) { putchar('0'); exit(0); }
if (b > a) swap(a,b);
int ans = b;
--n;
if (b > c) ans += n*c;
else ans += n*b;
printf("%d\n", ans);
return 0;
}
B. Divisibility of Differences
题意
从\(n\)个数中取\(m\)个数关于\(\%k\)同余。
思路
统计\(\%k=0,1,...,k-1\)的数的个数。
Code
#include <bits/stdc++.h>
#define maxn 100010
using namespace std;
typedef long long LL;
int a[maxn], cnt[maxn], ans[maxn];
int main() {
int n, m, k;
scanf("%d%d%d", &n, &m, &k);
for (int i = 0; i < n; ++i) {
scanf("%d", &a[i]);
++cnt[a[i] % k];
}
for (int i = 0; i < k; ++i) {
if (cnt[i] >= m) {
printf("Yes\n");
int tot = 0;
for (int j = 0; j < n && tot < m; ++j) {
if (a[j] % k == i) ans[tot++] = a[j];
}
printf("%d", ans[0]);
for (int i = 1; i < tot; ++i) printf(" %d", ans[i]); printf("\n");
exit(0);
}
}
printf("No\n");
return 0;
}
C. Classroom Watch
题意
给定一个数\(n(n\leq 1e9)\),已知\(n=x+(x各数位上数字之和)\),求所有满足条件的\(x\).
思路
显然,\(x\)最大只有\(9\)位,于是各数位上数字之和\(\leq 9*9=81\),循环\(81\)次\(check\)即可。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
int ans[100];
int digit(int x) {
int ret = 0;
while (x) {
ret += x % 10;
x /= 10;
}
return ret;
}
int main() {
int n;
scanf("%d", &n);
int tot = 0;
for (int i = max(n-81,0); i <= n; ++i) {
if (i+digit(i) == n) ans[tot++] = i;
}
printf("%d\n", tot);
for (int i = 0; i < tot; ++i) printf("%d\n", ans[i]);
return 0;
}
D. Sorting the Coins
题意
给定一个全\(0\)的串,询问\(n\)次,每次在上一次询问的基础上将串中某一个指定位置处的\(0\)变为\(1\),并问经过多少次操作能够使整个串左边全\(0\),右边全\(1\).
一次操作:从左到右扫描,每遇到一个\(1\),如果它右边是\(0\),就将它与右边的\(0\)交换位置,再从下一个位置继续开始扫描直至结束。
思路
首先,最右边的若干个\(1\)是不用处理的;而对于其左边所有的没有与最右边那块连接起来的\(1\),效果上每次只能将其中一个(即最右边的那个)移到与最右边的若干个\(1\)合并。所以操作次数即为当前总的\(1\)的个数减去最右边的连续的\(1\)的个数。
又因为最右边的连续的\(1\)在整个过程中肯定是逐渐向左延伸的,故可以记录左端点每次看是否可以向左拓展,时间复杂度\(O(n)\).
Code
#include <bits/stdc++.h>
#define maxn 300010
using namespace std;
typedef long long LL;
bool a[maxn];
int main() {
int n;
scanf("%d", &n);
int l = n+1, r = n+1;
putchar('1');
for (int i = 1; i <= n; ++i) {
int x;
scanf("%d", &x);
a[x] = 1;
while (l > 1 && a[l-1]) --l;
printf(" %d", i+1-(r-l));
}
putchar('\n');
return 0;
}
小结
这样的题目...有些遗憾晚上有课没能打_(:з」∠)_
\(B\)和\(C\)都很普通;
\(D\)很快想出了其中的道道但关于写法还是绕了路,一开始是去记录最右边的没有与最右边的\(1\)连续的一块然后各种讨论后来发现不行;
\(A\)一上来还真被蒙住了_(:з」∠)_在讨论是走两条边还是三条边...好题好题.
说遗憾什么的...反正\(EF\)也不会做,\(ABCD\)又过了超级多_(:з」∠)_
不遗憾不遗憾。
Codeforces Round #441 Div. 2 A B C D的更多相关文章
- Codeforces Round #441 (Div. 2)【A、B、C、D】
Codeforces Round #441 (Div. 2) codeforces 876 A. Trip For Meal(水题) 题意:R.O.E三点互连,给出任意两点间距离,你在R点,每次只能去 ...
- Codeforces Round #441 (Div. 2)
Codeforces Round #441 (Div. 2) A. Trip For Meal 题目描述:给出\(3\)个点,以及任意两个点之间的距离,求从\(1\)个点出发,再走\(n-1\)个点的 ...
- [日常] Codeforces Round #441 Div.2 实况
上次打了一发 Round #440 Div.2 结果被垃圾交互器卡掉 $200$ Rating后心情复杂... 然后立了个 Round #441 要翻上蓝的flag QAQ 晚饭回来就开始搞事情, 大 ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) D. Sorting the Coins
http://codeforces.com/contest/876/problem/D 题意: 最开始有一串全部由"O"组成的字符串,现在给出n个数字,指的是每次把位置n上的&qu ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) C. Classroom Watch
http://codeforces.com/contest/876/problem/C 题意: 现在有一个数n,它是由一个数x加上x每一位的数字得到的,现在给出n,要求找出符合条件的每一个x. 思路: ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) B. Divisiblity of Differences
http://codeforces.com/contest/876/problem/B 题意: 给出n个数,要求从里面选出k个数使得这k个数中任意两个的差能够被m整除,若不能则输出no. 思路: 差能 ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad) A. Trip For Meal
http://codeforces.com/contest/876/problem/A 题意: 一个人一天要吃n次蜂蜜,他有3个朋友,他第一次总是在一个固定的朋友家吃蜂蜜,如果说没有吃到n次,那么他就 ...
- Codeforces Round #441 (Div. 2, by Moscow Team Olympiad)
A. Trip For Meal 题目链接:http://codeforces.com/contest/876/problem/A 题目意思:现在三个点1,2,3,1-2的路程是a,1-3的路程是b, ...
- Codeforces Round #441 Div. 1
A:显然答案与原数的差不会很大. #include<iostream> #include<cstdio> #include<cmath> #include<c ...
- Codeforces Round #441(Div.2) F - High Cry
F - High Cry 题目大意:给你n个数,让你找区间里面所有数或 起来大于区间里面最大数的区间个数. 思路:反向思维,找出不符合的区间然后用总数减去.我们找出每个数掌控的最左端 和最右端,一个数 ...
随机推荐
- php扩展开发-哈希表
什么是哈希表呢?哈希表在数据结构中也叫散列表.是根据键名经过hash函数计算后,映射到表中的一个位置,来直接访问记录,加快了访问速度.在理想情况下,哈希表的操作时间复杂度为O(1).数据项可以在一个与 ...
- 安装 ubuntu 后,使用 sed 更换国内源
cd /etc/aptsed -i "s/archive.ubuntu.com/mirrors.aliyun.com/g" /etc/apt/sources.list也可以使用 1 ...
- keil swd设置下载stm32f103c8t6.
1.debug选项,选择jlink,2.utilities选择jlink3.加载flash算法.4.选择swd模式,其他基本上默认,这样就可以下载了对rom和ram设置需要说明一下:1,IROM1,前 ...
- 80C51单片机指令的取指、执行时序
80C51单片机指令的取指.执行时序 现按4类指令介绍CPU时序.因为CPU工作的过程就是取指令与执行指令的过程,所以CPU必须先取出指令,然后才能执行指令. 1.双字节单周期指令 由于双字节单周期指 ...
- PHP的抽象类、接口的区别和选择
1.对接口的使用是通过关键字implements.对抽象类的使用是通过关键字extends.当然接口也可以通过关键字extends继承. 2.接口中不可以声明成员变量(包括类静态变量),但是可以声明类 ...
- RF,GBDT,XGBoost,lightGBM的对比
转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensem ...
- Django 三—— Form组件
内容概要: 1.Django Form如何自定义验证字段 2.Django Form如何动态的显示数据库中新插入的数据 3.Tyrion Django的Form(用于验证用户请求合法性的一个组件) D ...
- laravel5.2总结--ORM模型
ORM模型简介 1>什么是ORM? ORM,即 Object-Relational Mapping(对象关系映射),它的作用是在关系型数据库和业务实体对象之间作一个映射,这样,我们在操作具体的 ...
- android基础知识杂记
Activity中获取视图组件对象:public View findViewById(@IdRes int id) 该方法以组件的资源ID为参数,返回一个视图对象View,需要强转成具体的视图类对象. ...
- Android 使用intent传递返回值:startActivityForResult()与onActivityResult()与setResult()参数分析,activity带参数的返回
在一个父Activity通过intent跳转至多个不同子Activity上去,当子模块的代码执行完毕后再次返回父页面,将子activity中得到的数据显示在主界面/完成的数据交给父Activity处理 ...