题目描述 Description

在一块梯形田地上,一群蚯蚓在做收集食物游戏。蚯蚓们把梯形田地上的食物堆积整理如下:

a(1,1)  a(1,2)…a(1,m)

a(2,1)  a(2,2)  a(2,3)…a(2,m)  a(2,m+1)

a(3,1)  a (3,2)  a(3,3)…a(3,m+1)  a(3,m+2)

……

a(n,1)   a(n,2)   a(n,3)…           a(n,m+n-1)

它们把食物分成n行,第1行有m堆的食物,每堆的食物量分别是a(1,1),a(1,2),…,a(1,m);

第2行有m+1堆食物,每堆的食物量分别是a(2,1),a(2,2),…,  a(2,m+1);以下依次有m+2堆、m+3堆、…m+n-1堆食物。

现在蚯蚓们选择了k条蚯蚓来测试它们的合作能力(1≤ k ≤m)。测试法如下:第1条蚯蚓从第1行选择一堆食物,然后往左下或右下爬,并收集1堆食物,例如从a(1,2)只能爬向a(2,2) 或a(2,3),而不能爬向其它地方。接下来再爬向下一行收集一堆食物,直到第n行收集一堆食物。第1条蚯蚓所收集到的食物量是它在每一行所收集的食物量之和;第2条蚯蚓也从第1行爬到第n行,每行收集一堆食物,爬的方法与第1条蚯蚓相类似,但不能碰到第1条蚯蚓所爬的轨迹;一般地,第i 条蚯蚓从第1行爬到第 n行,每行收集一堆食物,爬的方法与第1条蚯蚓类似,但不能碰到前 I-1 条蚯蚓所爬的轨迹。这k条蚯蚓应该如何合作,才能使它们所收集到的食物总量最多?收集到的食物总量可代表这k条蚯蚓的合作水平。

  • Ø编程任务:

给定上述梯形m、n和k的值(1≤k≤m≤30;1≤n≤30)以及梯形中每堆食物的量(小于10的非整数),编程计算这k条蚯蚓所能收集到的食物的最多总量。

输入描述 Input Description

输入数据由文件名为INPUT1.*的文本文件提供,共有n+1行。每行的两个数据之间用一个空格隔开。

●第1行是n、m和k的值。

  • 接下来的n行依次是梯形的每一行的食物量a(i,1),a(i,2),…,a(i,m+i-1),i=1,2,…,n。
输出描述 Output Description

程序运行结束时,在屏幕上输出k蚯蚓条所能收集到的食物的最多总量。

样例输入 Sample Input

3    2   2

1   2

5   0   2

1   10  0  6

样例输出 Sample Output

26

数据范围及提示 Data Size & Hint

hzw学长的模板很好用

 #include<iostream>
#include<cstring>
#include<queue>
using namespace std; const int INF=0x7fffffff;
const int X=;
const int N=;
const int M=; struct Edge
{
int from,to,v,c,next;
}E[M];
int node=;
int head[N],from[N],dis[N],vis[N]; int n,m,k,ans,tot; void ins(int from,int to,int v,int c)
{
node++;
E[node]=(Edge){from,to,v,c,head[from]};
head[from]=node;
} void insert(int from,int to,int v,int c)
{
ins(from,to,v,c);ins(to,from,,-c);
} bool spfa()
{
queue<int> Q;
memset(dis,-,sizeof(dis));
Q.push();dis[]=;vis[]=;
while(!Q.empty())
{
int q=Q.front();Q.pop();
for(int i=head[q];i;i=E[i].next)
if(E[i].v>&&dis[q]+E[i].c>dis[E[i].to])
{
dis[E[i].to]=dis[q]+E[i].c;
from[E[i].to]=i;
if(!vis[E[i].to])
{
Q.push(E[i].to);
vis[E[i].to]=;
}
}
vis[q]=;
}
return dis[N-]!=-;
} void mcf()
{
int x=INF;
for(int i=from[N-];i;i=from[E[i].from])
x=min(E[i].v,x);
for(int i=from[N-];i;i=from[E[i].from])
{
ans+=x*E[i].c;
E[i].v-=x;E[i^].v+=x;
}
} int main()
{
cin>>n>>m>>k;
int x;
for(int i=;i<=n;i++)
for(int j=;j<=m+i-;j++)
{
cin>>x;
tot++;
insert(tot,tot+X,,x);
if(i<n)
{
insert(tot+X,tot+i+m,,);
insert(tot+X,tot+i+m-,,);
}
}
for(int i=;i<=m;i++) insert(,i,,);
for(int i=;i<=n+m-;i++) insert(tot-i+X+,N-,,);
for(int i=;i<=k;i++)
if(spfa())
mcf();
else break;
cout<<ans;
return ;
}

Codevs1033 蚯蚓的游戏的更多相关文章

  1. codevs1033 蚯蚓的游戏问题

    题目描述 Description 在一块梯形田地上,一群蚯蚓在做收集食物游戏.蚯蚓们把梯形田地上的食物堆积整理如下: a(1,1)  a(1,2)…a(1,m) a(2,1)  a(2,2)  a(2 ...

  2. codevs1033 蚯蚓的游戏问题 裸最小费用最大流,注意要拆点

    因为蚯蚓走过的路径不能重合,所以把每个点拆成两个点,容量赋为1,保证不会走过相同的点,再加超级源点(程序中为1)和一个辅助点(程序中为2)容量赋为k来控制蚯蚓的数量,最后汇集到一个超级汇点上.做一遍最 ...

  3. 【codevs1033】 蚯蚓的游戏问题

    http://codevs.cn/problem/1033/ (题目链接) 题意 给出一个梯形的数列,每一个数可以向它左下方和右下方的数走.求从第一行走到最后一行的不重叠的K条路径,使得经过的数的和最 ...

  4. codevs 1033 蚯蚓的游戏问题

    Description 在一块梯形田地上,一群蚯蚓在做收集食物游戏.蚯蚓们把梯形田地上的食物堆积整理如下: a(1,1)  a(1,2)…a(1,m) a(2,1)  a(2,2)  a(2,3)…a ...

  5. 【wikioi】1033 蚯蚓的游戏问题(费用流)

    http://wikioi.com/problem/1033/ 这题也是很水的费用流啊,同之前那题一样,拆点然后建边,容量为1,费用为点权.然后建个源连第一行每个点,容量为1,费用为0,然后最后一行每 ...

  6. CODEVS_1033 蚯蚓的游戏问题 网络流 最小费用流 拆点

    原题链接:http://codevs.cn/problem/1033/ 题目描述 Description 在一块梯形田地上,一群蚯蚓在做收集食物游戏.蚯蚓们把梯形田地上的食物堆积整理如下: a(1,1 ...

  7. 【CODEVS】1033 蚯蚓的游戏问题

    [算法]网络流-最小费用最大流(费用流) [题解]与方格取数2类似 在S后添加辅助点S_,限流k 每条边不能重复走,限流1 #include<cstdio> #include<alg ...

  8. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

  9. codevs1227 方格取数2 注意数组啊啊啊啊啊啊啊啊啊啊

    一开始T了一组RE了一组,实在找不出错来,就把数组加了一个0竟然就多A了一组.很惊讶的又加了几个0最后竟然全A了!!! 懒得做了,改的是之前的那个蚯蚓的游戏问题.还是需要拆点,至于为什么不能重复走结点 ...

随机推荐

  1. 剑指Offer的学习笔记(C#篇)-- 数组中只出现一次的数字

    题目描述 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字. 题目给定:num1,num2分别为长度为1的数组.传出参数:将  num1[0], num2[0 ...

  2. 剑指Offer的学习笔记(C#篇)-- 平衡二叉树(二叉树后序遍历递归详解版)

    题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 一 . 题目分析 首先要理解一个概念:什么是平衡二叉树,如果某二叉树中任意的左右子树深度相差不超过1,那么他就是一颗平衡二叉树.如下图: 所以 ...

  3. Macbook 修复Office Excel 异常问题

    manbook 版本的office excel 在一次崩溃后,每次打开excel 文件都会弹出以下烦人的错误告警,并且每次都会重新打开很多过去保存过的excel 文件. “在应用程序意外退出之前,Ex ...

  4. 深入V8引擎-Time模块介绍

    积跬步,行千里,先从最简单的开始写. 这一篇介绍V8中的时间模块,与libuv粗糙的update_loop_time方法不同,V8有一套独立完整的类负责管理时间. 该类位于src/base/platf ...

  5. VUE中模块与组件

    组件:我们项目中,每一个资源(.js,.css,.vue,...)都是一个模块,这些模块是相互独立,但是我们可以通过类似于webpack构建工具把它们整合在一起,你可以理解为模块就是一个一个积木,通过 ...

  6. Codeforces Round 56-B. Letters Rearranging(思维)

    time limit per test 1 second memory limit per test 256 megabytes input standard input output standar ...

  7. 电脑Bois中usb模式启动热键

    组装机主板 品牌笔记本 品牌台式机 主板品牌 启动按键 笔记本品牌 启动按键 台式机品牌 启动按键 华硕主板 F8 联想笔记本 F12 联想台式机 F12 技嘉主板 F12 宏基笔记本 F12 惠普台 ...

  8. AngularJS(八):http服务

    本文也同步发表在我的公众号“我的天空” http服务 之前我们的示例都是在本地获取模拟数据,在实际应用中,所有的项目都将不可避免的从后台获取数据,我们都是通过Ajax来实现与服务器的通信.在Angul ...

  9. Kendo UI 特效概述

    Kendo UI 特效概述 Kendo UI Fx 提供了一个丰富,可扩展,性能经过优化的工具集合用来完成 HTML 元素的过渡显示.每种特效近可能的使用 CSS Transition ,对于一些老版 ...

  10. 带你零基础入门redis【一】

    本篇文章介绍在CentOS7系统安装redis,以及redis的简单操作   我们把redis安装在/usr/local目录下.分别执行以下命令 [root@VM_6_102_centos ~]# c ...