题目链接

D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

题意:

原来袋子里有w只白鼠和b只黑鼠
龙和王妃轮流从袋子里抓老鼠。谁先抓到白色老师谁就赢。
王妃每次抓一只老鼠,龙每次抓完一只老鼠之后会有一只老鼠跑出来。
每次抓老鼠和跑出来的老鼠都是随机的。
如果两个人都没有抓到白色老鼠则龙赢。王妃先抓。
问王妃赢的概率。

分析:

设dp[i][j]表示现在轮到王妃抓时有i只白鼠,j只黑鼠,王妃赢的概率
明显 dp[0][j]=0,0<=j<=b;因为没有白色老鼠了
dp[i][0]=1,1<=i<=w;因为都是白色老鼠,抓一次肯定赢了。
dp[i][j]可以转化成下列四种状态:
1、王妃抓到一只白鼠,则王妃赢了,概率为i/(i+j);
2、王妃抓到一只黑鼠,龙抓到一只白色,则王妃输了,概率为j/(i+j)*i/(i+j-1).
3、王妃抓到一只黑鼠,龙抓到一只黑鼠,跑出来一只黑鼠,则转移到dp[i][j-3]。
概率为j/(i+j)*(j-1)/(i+j-1)*(j-2)/(i+j-2);
4、王妃抓到一只黑鼠,龙抓到一只黑鼠,跑出来一只白鼠,则转移到dp[i-1][j-2].
概率为j/(i+j)*(j-1)/(i+j-1)*i/(i+j-2);

当然后面两种情况要保证合法,即第三种情况要至少3只黑鼠,第四种情况要至少2只白鼠

分析转载自: http://www.cnblogs.com/kuangbin/archive/2012/10/04/2711184.html

概率dp正推。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <cmath>
#include <algorithm>
#define LL __int64
const int maxn = 1e3 + ;
using namespace std;
double d[maxn][maxn]; int main()
{
int w, b, i, j;
while(~scanf("%d%d", &w, &b))
{
memset(d, , sizeof(d));
for(i = ; i <= w; i++) //一定要注意从1开始,不然初始化会出错,d[0][0]应该==0
d[i][] = 1.0;
for(i = ; i <= w; i++) //i和j也都要从1开始,不然因为下面第一个式子会重复计算
for(j = ; j <= b; j++)
{
d[i][j] += (double)i/(i+j);
if(j>=)
d[i][j] += (double)j/(i+j)*(double)(j-)/(i+j-)*(double)i/(i+j-)*d[i-][j-];
if(j>=)
d[i][j] += (double)j/(i+j)*(double)(j-)/(i+j-1.0)*(double)(j-)/(i+j-2.0)*d[i][j-];
}
printf("%.9lf\n", d[w][b]);
}
return ;
}

CF 148D D Bag of mice (概率dp)的更多相关文章

  1. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  2. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  6. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  7. CF 148D D. Bag of mice (概率DP||数学期望)

    The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests ...

  8. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  9. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

随机推荐

  1. 九度OJ 1019:简单计算器 (基础题、DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6725 解决:2454 题目描述:     读入一个只包含 +, -, *, / 的非负整数计算表达式,计算该表达式的值. 输入:     ...

  2. 九度OJ 1013:开门人和关门人 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5052 解决:2563 题目描述:     每天第一个到机房的人要把门打开,最后一个离开的人要把门关好.现有一堆杂乱的机房签到.签离记录,请 ...

  3. tcp/ip (网络通讯协议)

    介绍 TCP: 传输控制协议, IP: 网际协议, TCP/IP: 供已连接互联网的计算机之间进行通信的通信协议 在tcp/ip内部 , 包含一系列处理数据通信的协议: tcp.udp.icmp.dh ...

  4. 【题解】 P5021赛道修建

    [题解]P5021 赛道修建 二分加贪心,轻松拿省一(我没有QAQ) 题干有提示: 输出格式: 输出共一行,包含一个整数,表示长度最小的赛道长度的最大值. 注意到没,最小的最大值,还要多明显? 那么我 ...

  5. python cookbook第三版学习笔记十一:类和对象(二)调用父类的方法

    在子类中调用父类的方法,可以下面的A.spam(self)的方法. class A(object):     def spam(self):         print 'A.spam' class ...

  6. Gemini.Workflow 双子工作流入门教程三:定义流程:流程节点、迁移条件参数配置

    简介: Gemini.Workflow 双子工作流,是一套功能强大,使用简单的工作流,简称双子流,目前配套集成在Aries框架中. 下面介绍本篇教程:定义流程:流程节点.迁移条件参数配置. 一.普通节 ...

  7. POJ - 1426 Find The Multiple 【DFS】

    题目链接 http://poj.org/problem?id=1426 题意 给出一个数 要求找出 只有 0 和 1 组成的 十进制数字 能够整除 n n 不超过 200 十进制数字位数 不超过100 ...

  8. hashMap的线程不安全

    hashMap是非线程安全的,表现在两种情况下: 1 扩容: t1线程对map进行扩容,此时t2线程来读取数据,原本要读取位置为2的元素,扩容后此元素位置未必是2,则出现读取错误数据. 2 hash碰 ...

  9. cinder挂载卷的过程原理

    LVM名称介绍 PV:物理磁盘 VG:卷组,多个PV可以组成一个VG,一个VG可以划分成多个LV(逻辑卷). PP:物理区块,将一个VG逻辑的划分成连续的小块. LP:逻辑区块,若干个PP组成一个LP ...

  10. NodeJs如何全局统一处理异常,实现RestFull风格

    当在controller中处理客户端发来的数据时,我们会去校验数据,当数据错误时,我们会给客户端返回一个信息,如: export function add (req, res, next) { con ...