Neural Networks for Machine Learning by Geoffrey Hinton (1~2)
机器学习能良好解决的问题
- 识别模式
- 识别异常
- 预測
大脑工作模式
人类有个神经元,每一个包括
个权重,带宽要远好于工作站。
神经元的不同类型
Linear (线性)神经元
Binary threshold (二值)神经元
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
\begin{array}{l}z = b + \sum\limits_i^n {{x_i}{w_i}} \\y = \left\{ \begin{array}{l}\begin{array}{*{20}{c}}1&{z \ge 0}\end{array}\\\begin{array}{*{20}{c}}0&{otherwise}\end{array}\end{array} \right.\\\theta = - b\end{array}" alt="">
ReLu(Rectified Linear Units) 神经元
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
Sigmoid 神经元
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
\begin{array}{l}z = b + \sum\limits_i^n {{x_i}{w_i}} \\y = \frac{1}{{1 + {e^{ - z}}}}\end{array}" alt="">
Stochastic binary (随机二值)神经元
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
\begin{array}{l}z = b + \sum\limits_i^n {{x_i}{w_i}} \\p\left( {s = 1} \right) = \frac{1}{{1 + {e^{ - z}}}}\end{array}" alt="">
学习任务的不同类型
Supervised learning(监督学习)
给定输入向量。学习怎样预測输出向量。
比如:回归与聚类。
Reinforcement learning(增强学习)
学习怎样选择动作去最大化payoff(收益)。
输出是一个动作,或者动作的序列。唯一的监督信号是一个标量反馈。
难度在于反馈在非常大程度上是有延时的,并且一个标量包括的信息量非常有限。
Unsupervised learning(非监督学习)
发现输入的良好内在表达形式。
提供输入的紧凑、低维度表达。
由已经学到的特征来提供输入的经济性高维度表达。
聚类是极度稀疏的编码形式。仅仅有一维非零特征。
神经网络的不同类型
Feed-forward neural networks (前向传播神经网络)
超过一层隐含层即为深度神经网络。
Recurrent networks(循环神经网络)
生物学上更可信。
用RNN能够给序列进行建模:
等效于很深的网络,每层隐含层相应一个时间片。
隐含层有能力记忆长时间信息。
从几何角度看感知机
Weight-space (权重空间)
每一个权重相应空间一维。
空间每一点相应某个特定权重选择。
忽略偏置项,每一个训练样本能够视为一个过原点的超平面。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
把全部的训练样本都考虑进去,权重的可行解就在一个凸锥里面了。
二值神经元做不到的事
同或
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
循环简单模式识别
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300" alt="">
不论对于模式A或是模式B,每次把整个训练集跑完时,神经元得到的输入都是全部权值的4倍。
没有不论什么差别。也就无法区分两者之间的差异了(非循环模式能够识别)。
使用隐藏神经元
线性神经元再多层也是线性的,不会添加网络学习能力。
固定输出的非线性也不够。
学习隐藏层的权重等效于学习特征。
欢迎參与讨论并关注本博客和微博以及知乎个人主页兴许内容继续更新哦~
转载请您尊重作者的劳动,完整保留上述文字以及文章链接,谢谢您的支持!
Neural Networks for Machine Learning by Geoffrey Hinton (1~2)的更多相关文章
- Neural Networks for Machine Learning by Geoffrey Hinton (4)
一种能够学习家谱关系的简单神经网络 血缘一共同拥有12种关系: son, daughter, nephew, niece, father, mother, uncle, aunt, brother, ...
- [Hinton] Neural Networks for Machine Learning - Basic
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 ...
- [Hinton] Neural Networks for Machine Learning - Converage
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Ref: 神经网络训练中的Tricks之高效BP ...
- [Hinton] Neural Networks for Machine Learning - RNN
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 补充: 参见cs231n 2017版本,ppt写得 ...
- [Hinton] Neural Networks for Machine Learning - Bayesian
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Lecture 09 Lecture 10 提高泛 ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- [Hinton] Neural Networks for Machine Learning - Hopfield Nets and Boltzmann Machine
Lecture 11 — Hopfield Nets Lecture 12 — Boltzmann machine learning Ref: 能量模型(EBM).限制波尔兹曼机(RBM) 高大上的模 ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题
1.What does the analogy “AI is the new electricity” refer to? (B) A. Through the “smart grid”, AI i ...
随机推荐
- Jquery+Ajax+asp.net+sqlserver-编写的通用邮件管理(有源码)
开始 邮件管理通常用在各个内部系统中,为了方便快捷的使用现有的代码开发一个邮件管理系统而诞生的. 准备条件 这是我的设计表结构,大家一看就懂了 --邮件接收表CREATE TABLE [dbo].[T ...
- 大数据学习——akka自定义RPC
实现 package cn.itcast.akka import akka.actor.{Actor, ActorSystem, Props} import akka.actor.Actor.Rece ...
- 【LeetCode】Binary Tree Level Order Traversal(二叉树的层次遍历)
这道题是LeetCode里的第102道题. 题目要求: 给定一个二叉树,返回其按层次遍历的节点值. (即逐层地,从左到右访问所有节点). 例如: 给定二叉树: [3,9,20,null,null,15 ...
- Codeforces Round #473 (Div. 2)
A. Mahmoud and Ehab and the even-odd game time limit per test 1 second memory limit per test 256 meg ...
- pip installl安装包特别慢? 指定源进行安装
指定源地址安装: pip install -i http://pypi.douban.com/simple/ packagename pip install -i http://pypi.tuna.t ...
- pat 1037
如果你是哈利·波特迷,你会知道魔法世界有它自己的货币系统 —— 就如海格告诉哈利的:“十七个银西可(Sickle)兑一个加隆(Galleon),二十九个纳特(Knut)兑一个西可,很容易.”现在,给定 ...
- 2016湖南省赛----G - Parenthesis (括号匹配)
2016湖南省赛----G - Parenthesis (括号匹配) Bobo has a balanced parenthesis sequence P=p 1 p 2…p n of lengt ...
- iOS开发 UILabel实现自适应高宽
UILabel是iOS开发常用的控件.UILabel的属性需要了解,UILabel的特殊显示效果也需要我们掌握.UILabel自适应高宽度是很多初学者遇到的技术性难题.比如段文字,要让他完全地分行显示 ...
- [BZOJ3585][BZOJ3339]mex
[BZOJ3585][BZOJ3339]mex 试题描述 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入 第一行n,m.第二行为n个数.从 ...
- 使用router.push()进行页面跳转的问题
看着官网的文档直接router.push()这样会报错router undefind,需要写成this.$router.push()才可以