Problem 2273 Triangles

Accept: 201    Submit: 661
Time Limit: 1000 mSec    Memory Limit : 262144
KB

Problem Description

This is a simple problem. Given two triangles A and B, you should determine
they are intersect, contain or disjoint. (Public edge or point are treated as
intersect.)

Input

First line contains an integer T (1 ≤ T ≤ 10), represents there are T test
cases.

For each test case: X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6. All the coordinate
are integer. (X1,Y1) , (X2,Y2), (X3,Y3) forms triangles A ; (X4,Y4) , (X5,Y5),
(X6,Y6) forms triangles B.

-10000<=All the coordinate <=10000

Output

For each test case, output “intersect”, “contain” or “disjoint”.

Sample Input

2
0 0 0 1 1 0 10 10 9 9 9 10
0 0 1 1 1 0 0 0 1 1 0 1

Sample Output

disjoint
intersect

Source

第八届福建省大学生程序设计竞赛-重现赛(感谢承办方厦门理工学院)

 
思路:先判断其中一个三角形a的顶点是否都在另一个三角形b的内部,或者有点在另一个三角形b的边上,抑或b的外部和内部都有a的顶点,这三种情况都好判断,直接输出判断结果。若a的三个顶点都在b的外部,继续判断b的三个顶点与a的关系,可能的关系:b的三个顶点都在a的外部,b的顶点在a内部外部都有,b的顶点都在a的内部。后两种情况好判断,输出结果。第一种情况则要继续判断,此时a,b的顶点都在对方三角形的外部,此时有可能相交,也有可能相离,只需要判断一下其中一个三角形的一条边是否和另一个三角形的某条边相交即可。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include <iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<bitset>
#include<set>
#include<map>
#include<cmath>
#include<queue>
using namespace std;
#define N_MAX 10000+4
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define EPS 1e-8
typedef long long ll;
struct point {
double x, y;
point(double x = , double y = ) :x(x), y(y) {}
point operator + (point p) { return point(x + p.x, y + p.y); }
point operator - (point p) { return point(x - p.x, y - p.y); }
point operator * (double a) { return point(a*x, a*y); }
double norm() { return x*x + y*y; }
bool operator < (const point &p) const{
return x != p.x ? x + EPS < p.x : y + EPS < p.y;
}
}; double dot(point a,point b) {
return a.x*b.x + a.y*b.y;
}
double det(point a,point b) {
return a.x*b.y - a.y*b.x;
}
typedef vector<point>polygon;
int contain( polygon g, point p) {//1代表在多边形内,0代表在多边形外,2在边上
int n = g.size(); bool x = ;
for (int i = ; i < n;i++) {
point a = g[i] - p, b = g[(i + ) % n] - p;
if (fabs(det(a, b)) < EPS&&dot(a, b) < EPS)return ;
if (a.y > b.y)swap(a, b);
if (a.y<EPS&&b.y>EPS&&det(a, b) > EPS)x = !x;
}
return x ? : ;
}
int ccw(point a,point b,point c) {//顺时针转还是逆时针转
point x = b - a, y = c - a;
if(det(x, y)>EPS)return ;
if (det(x, y) < -EPS)return -;
if (dot(a, b) < -EPS)return ;
if (a.norm() < b.norm())return -;
return ;
} int main() {
int t; scanf("%d",&t);
while (t--) {
polygon T1, T2;
T1.resize(); T2.resize();
for (int i = ; i < ; i++)
scanf("%lf%lf",&T1[i].x,&T1[i].y);
for (int i = ; i < ; i++)
scanf("%lf%lf", &T2[i].x, &T2[i].y);
bool is_wai = , is_nei = ,flag=;
for (int i = ; i < ;i++) {
int c = contain(T1, T2[i]);
if (c==) {
is_nei = ;
}
else if(c==)is_wai = ;
else { flag = ; break; }//在边上一定相交
}
if (flag||(is_wai&&is_nei)) { puts("intersect"); continue; }
if (is_nei && !is_wai) { puts("contain"); }
else {
is_nei = ,is_wai=;
for (int i = ; i < ;i++) {
int c = contain(T2,T1[i]);
if (c == )is_nei = ;
if (c == )is_wai = ;
}
if (is_nei&&!is_wai)puts("contain");
if (is_nei&&is_wai)puts("intersect");
else {//六个点都在另外三角形的外部,判断是否有边相交的情况
bool is_intersect = ;
point a = T1[], b = T1[];
for (int i = ; i < ; i++) {
point c = T2[i], d = T2[(i + ) % ];
if (ccw(a, b, c)*ccw(a, b, d) <= && ccw(c, d, a)*ccw(c, d, b) <= ){
is_intersect = ; break;
}
}
if (is_intersect)puts("intersect");
else puts("disjoint");
}
}
}
return ;
}

FOJ Problem 2273 Triangles的更多相关文章

  1. FZU 2273 Triangles 第八届福建省赛 (三角形面积交 有重边算相交)

    Problem Description This is a simple problem. Given two triangles A and B, you should determine they ...

  2. FOJ ——Problem 1759 Super A^B mod C

     Problem 1759 Super A^B mod C Accept: 1368    Submit: 4639Time Limit: 1000 mSec    Memory Limit : 32 ...

  3. FOJ Problem 1016 无归之室

     Problem 1016 无归之室 Accept: 926    Submit: 7502Time Limit: 1000 mSec    Memory Limit : 32768 KB  Prob ...

  4. FOJ Problem 1015 土地划分

    Problem 1015 土地划分 Accept: 823    Submit: 1956Time Limit: 1000 mSec    Memory Limit : 32768 KB  Probl ...

  5. foj Problem 2107 Hua Rong Dao

    Problem 2107 Hua Rong Dao Accept: 503    Submit: 1054Time Limit: 1000 mSec    Memory Limit : 32768 K ...

  6. foj Problem 2282 Wand

     Problem 2282 Wand Accept: 432    Submit: 1537Time Limit: 1000 mSec    Memory Limit : 262144 KB Prob ...

  7. foj Problem 2275 Game

    Problem D Game Accept: 145    Submit: 844Time Limit: 1000 mSec    Memory Limit : 262144 KB Problem D ...

  8. foj Problem 2283 Tic-Tac-Toe

                                                                                                    Prob ...

  9. FOJ Problem 2257 Saya的小熊饼干

                                                                                                        ...

随机推荐

  1. ES6学习(一):数值的扩展

    chapter06 数值的扩展 6.1 二进制和八进制 二进制 前缀 0b 或者 0B 八进制 前缀 0o 或者 0O 6.2 Number.isFinite() Number.isNaN() 原先这 ...

  2. EasyUI取消树节点选中

    $('#organTree').find('.tree-node-selected').removeClass('tree-node-selected'); 取消树的节点选中

  3. 使用Maven开发一个简单的SpringData

    1:创建Maven项目 2:添加依赖(修改pom.xml为以下代码) <project xmlns="http://maven.apache.org/POM/4.0.0" x ...

  4. 三十五、MySQL 运算符

    MySQL 运算符 本章节我们主要介绍 MySQL 的运算符及运算符的优先级. MySQL 主要有以下几种运算符: 算术运算符 比较运算符 逻辑运算符 位运算符 算术运算符 MySQL 支持的算术运算 ...

  5. Python_day01_作业笔记

    内容大纲: 1. python的出生与应用以及历史, python2x: 源码冗余,源码重复,源码不规范. python3x: 源码清晰优美简单.   2. python的种类. Cpython: 官 ...

  6. 时间转换,django的时间设置,re模块简单校验密码和手机号

    时间转换和密码,手机的re模块简单校验 import re,time def check_userinfo(request): pwd = request.POST.get("pwd&quo ...

  7. Essential C++ 3.1 节的代码练习——哨兵方式

    #include "IncrementArray.hpp" template <typename element> element *find_address(elem ...

  8. 三次样条插值matlab实现

    三次样条插值matlab实现 %三次样条差值-matlab通用程序 - zhangxiaolu2015的专栏 - CSDN博客 https://blog.csdn.net/zhangxiaolu201 ...

  9. Java集合中的细节问题

    1)集合不保存基本数据类型,而是会把基本数据类型装箱后保存. 2)Empty和null的区别:null是不存在,Empty已经初始化了,只不过里面是空的. 3)判断集合有效性: 先判断空,再判断emp ...

  10. 【Python Selenium】简单数据生成脚本

    最近因工作需要,写了一个简单的自动化脚本,纯属学习,顺便学习下selenium模块. 废话不多说,直接上代码!! 这里一位大神重写了元素定位.send_keys等方法,咱们直接进行调用. 适用Pyth ...