【bzoj3771】Triple FFT+容斥原理
题目描述
输入
输出
样例输入
4
4
5
6
7
样例输出
4 1
5 1
6 1
7 1
9 1
10 1
11 2
12 1
13 1
15 1
16 1
17 1
18 1
题解
FFT+容斥原理
一个数的方案数$f(x)$,就是原序列的生成函数(初学时理解为桶 = =)。
两个数的方案数为$(f*f)(x)$,但其中包含了两次使用了同一个数的方案数$g(x)=f(2x)$,而其余的方案统计了两次,所以方案数为$\frac 12(f*f-g)(x)$。
三个数的方案数为$(f*f*f)(x)$,但其中包含了三次使用了同一个数的方案数$h(x)=f(3x)$,包含了使用了两次同一个数,另一个数不同的方案数$(f*g-h)(x)*3$(里面减掉$h$是因为三次使用同一个数的方案数被重复计算,而乘3是因为在$(f*f*f)(x)$中计算了3次),而其余的方案统计了,所以方案数为$\frac 16((f*f*f-3*f*g+2*h)(x))$。
最后数值不为0的就是答案。
#include <cstdio>
#include <cmath>
#include <algorithm>
#define N 1 << 19
#define pi acos(-1)
using namespace std;
typedef long long ll;
struct data
{
double x , y;
data() {x = y = 0;}
data(double x0 , double y0) {x = x0 , y = y0;}
data operator+(const data a)const {return data(x + a.x , y + a.y);}
data operator-(const data a)const {return data(x - a.x , y - a.y);}
data operator*(const data a)const {return data(x * a.x - y * a.y , x * a.y + y * a.x);}
}a[N] , b[N] , c[N] , d[N] , e[N];
int f[N];
void fft(data *a , int n , int flag)
{
int i , j , k;
for(i = k = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = (n >> 1) ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
data wn(cos(2 * pi * flag / k) , sin(2 * pi * flag / k));
for(i = 0 ; i < n ; i += k)
{
data t , w(1 , 0);
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn)
t = w * a[j + (k >> 1)] , a[j + (k >> 1)] = a[j] - t , a[j] = a[j] + t;
}
}
if(flag == -1)
for(i = 0 ; i < n ; i ++ )
a[i].x /= n;
}
int main()
{
int n , i , t , m = 0 , len;
scanf("%d" , &n);
while(n -- ) scanf("%d" , &t) , a[t].x ++ , b[t * 2].x ++ , c[t * 3].x ++ , d[t].x ++ , e[t * 2].x ++ , f[t] ++ ;
m = t * 3;
for(len = 1 ; len < m ; len <<= 1);
fft(a , len , 1) , fft(b , len , 1);
for(i = 0 ; i < len ; i ++ ) b[i] = b[i] * a[i] , a[i] = a[i] * a[i] * a[i];
fft(a , len , -1) , fft(b , len , -1);
fft(d , len , 1);
for(i = 0 ; i < len ; i ++ ) d[i] = d[i] * d[i];
fft(d , len , -1);
for(i = 1 ; i <= m ; i ++ )
if((ll)(a[i].x - 3 * b[i].x + 2 * c[i].x + 0.5) / 6 + (ll)(d[i].x - e[i].x + 0.5) / 2 + f[i])
printf("%d %lld\n" , i , (ll)(a[i].x - 3 * b[i].x + 2 * c[i].x + 0.5) / 6 + (ll)(d[i].x - e[i].x + 0.5) / 2 + f[i]);
return 0;
}
【bzoj3771】Triple FFT+容斥原理的更多相关文章
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- BZOJ 3771 Triple FFT+容斥原理
解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...
- BZOJ3771 Triple(FFT+容斥原理)
思路比较直观.设A(x)=Σxai.先把只选一种的统计进去.然后考虑选两种,这个直接A(x)自己卷起来就好了,要去掉选同一种的情况然后除以2.现在得到了选两种的每种权值的方案数,再把这个卷上A(x). ...
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- 2018.12.31 bzoj3771: Triple(生成函数+fft+容斥原理)
传送门 生成函数经典题. 题意简述:给出nnn个数,可以从中选1/2/31/2/31/2/3个,问所有可能的和对应的方案数. 思路: 令A(x),B(x),C(x)A(x),B(x),C(x)A(x) ...
- SPOJ Triple Sums(FFT+容斥原理)
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...
- bzoj3771: Triple(容斥+生成函数+FFT)
传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- 【BZOJ 3771】 3771: Triple (FFT+容斥)
3771: Triple Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 547 Solved: 307 Description 我们讲一个悲伤的故事. ...
随机推荐
- iOS 提交form表单,上传图片
之前不会用,总感觉很难,用后感觉不是太难,本文只是简单的讲一下怎么使用的, //实例话对象 AFHTTPSessionManager *manager = [AFHTTPSessionManager ...
- js 常用工具类
/** * 存储sessionStorage */const setStore = (name, content) => { window.sessionStorage.setItem(name ...
- eclipse 导出Runnable JAR file ,双击无法执行原因与解决 双击后闪退的原因 批处理java打包文件 @echo off start javaw -jar *.jar
eclipse 导出Runnable JAR file 导出后如果系统没有JRE,双击无法运行,需要用命令方法 安装后解决,如图 双击后闪退的原因,通过执行 java -jar TingGe.jar ...
- unix环境高级编程一书中部分错误处理函数
#include <unistd.h> #include <errno.h> #include <string.h> #include <stdio.h> ...
- 回数是指从左向右读和从右向左读都是一样的数,例如 12321 , 909 。请利用 filter() 滤掉非回数
不管在什么地方,什么时候,学习是快速提升自己的能力的一种体现!!!!!!!!!!! 最近一段时间学习了廖雪峰老师学的Python学习资料,给自己的帮助很大,同时也学到的了很多,今天做了一道练习题,对于 ...
- python 使用requests 请求 https 接口 ,取消警告waring
response = requests.request("POST", url, timeout=20, data=payload, headers=headers, proxie ...
- python 实现剪刀石头布(三局两胜)
# -*- coding:utf-8 -*- import random # best of three def finger_guess(): rule = {1:'rock', 2:'paper' ...
- GNU汇编 程序状态字访问指令
.text .global _start _start: mrs r0,cpsr orr r0,#0b100 msr cpsr,r0
- c++ string vector类
//string对象的初始化 #include <iostream> #include <string> //typedef std::basic_string<char ...
- 字符编码,ASCII、Unicode与UTF-8的理解
首先我们先要明白的两点是:1.计算机中的信息都是由二进制的0和1储存的:2.我们再计算机屏幕上看到的各种字符都是计算机系统按照一定的规则将二进制数字转换而来的. 一.基本概念. 1.字符集(chars ...