logistic回归
logistic回归
回归就是对已知公式的未知参数进行估计。比如已知公式是$y = a*x + b$,未知参数是a和b,利用多真实的(x,y)训练数据对a和b的取值去自动估计。估计的方法是在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值,直到找到那个最符合样本点分布的参数(或参数组合)。
logistic分布
设X是连续随机变量,X服从logistic分布是指X具有下列分布函数和密度函数:
$$F(x)=P(x \le x)=\frac 1 {1+e{-(x-\mu)/\gamma}}\\
f(x)=F{'}(x)=\frac {e^{-(x-\mu)/\gamma}} {\gamma(1+e{-(x-\mu)/\gamma})2}$$
其中,$\mu$为位置参数,$\gamma$为形状参数。
$f(x)$与$F(x)$图像如下,其中分布函数是以$(\mu, \frac 1 2)$为中心对阵,$\gamma$越小曲线变化越快。
logistic回归模型
二项logistic回归模型如下:
$$P(Y=1|x)=\frac {exp(w \cdot x + b)} {1 + exp(w \cdot x + b)} \
P(Y=0|x)=\frac {1} {1 + exp(w \cdot x + b)}$$
其中,$x \in R^n$是输入,$Y \in {0,1}$是输出,w称为权值向量,b称为偏置,$w \cdot x$为w和x的内积。
参数估计
假设:
$$P(Y=1|x)=\pi (x), \quad P(Y=0|x)=1-\pi (x)$$
则似然函数为:
$$\prod_{i=1}^N [\pi (x_i)]^{y_i} [1 - \pi(x_i)]^{1-y_i}
$$
求对数似然函数:
$$L(w) = \sum_{i=1}^N [y_i \log{\pi(x_i)} + (1-y_i) \log{(1 - \pi(x_i)})]\
=\sum_{i=1}^N [y_i \log{\frac {\pi (x_i)} {1 - \pi(x_i)}} + \log{(1 - \pi(x_i)})]$$
从而对$L(w)$求极大值,得到$w$的估计值。
求极值的方法可以是梯度下降法,梯度上升法等。
梯度上升确定回归系数
logistic回归的sigmoid函数:
$$\sigma (z) = \frac 1 {1 + e^{-z}}$$
假设logstic的函数为:
$$y = w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n$$
可简写为:
$$y = w_0 + w^T x$$
梯度上升算法是按照上升最快的方向不断移动,每次都增加$\alpha \nabla_w f(w)$,
$$w = w + \alpha \nabla_w f(w) $$
其中,$\nabla_w f(w)$为函数导数,$\alpha$为增长的步长。
训练算法
本算法的主要思想根据logistic回归的sigmoid函数来将函数值映射到有限的空间内,sigmoid函数的取值范围是0~1,从而可以把数据按照0和1分为两类。在算法中,首先要初始化所有的w权值为1,每次计算一次误差并根据误差调整w权值的大小。
- 每个回归系数都初始化为1
- 重复N次
- 计算整个数据集合的梯度
- 使用$\alpha \cdot \nabla f(x)$来更新w向量
- 返回回归系数
#!/usr/bin/env python
# encoding:utf-8
import math
import numpy
import time
import matplotlib.pyplot as plt
def sigmoid(x):
return 1.0 / (1 + numpy.exp(-x))
def loadData():
dataMat = []
laberMat = []
with open("test.txt", 'r') as f:
for line in f.readlines():
arry = line.strip().split()
dataMat.append([1.0, float(arry[0]), float(arry[1])])
laberMat.append(float(arry[2]))
return numpy.mat(dataMat), numpy.mat(laberMat).transpose()
def gradAscent(dataMat, laberMat, alpha=0.001, maxCycle=500):
"""general gradscent"""
start_time = time.time()
m, n = numpy.shape(dataMat)
weights = numpy.ones((n, 1))
for i in range(maxCycle):
h = sigmoid(dataMat * weights)
error = laberMat - h
weights += alpha * dataMat.transpose() * error
duration = time.time() - start_time
print "duration of time:", duration
return weights
def stocGradAscent(dataMat, laberMat, alpha=0.01):
start_time = time.time()
m, n = numpy.shape(dataMat)
weights = numpy.ones((n, 1))
for i in range(m):
h = sigmoid(dataMat[i] * weights)
error = laberMat[i] - h
weights += alpha * dataMat[i].transpose() * error
duration = time.time() - start_time
print "duration of time:", duration
return weights
def betterStocGradAscent(dataMat, laberMat, alpha=0.01, numIter=150):
"""better one, use a dynamic alpha"""
start_time = time.time()
m, n = numpy.shape(dataMat)
weights = numpy.ones((n, 1))
for j in range(numIter):
for i in range(m):
alpha = 4 / (1 + j + i) + 0.01
h = sigmoid(dataMat[i] * weights)
error = laberMat[i] - h
weights += alpha * dataMat[i].transpose() * error
duration = time.time() - start_time
print "duration of time:", duration
return weights
start_time = time.time()
def show(dataMat, laberMat, weights):
m, n = numpy.shape(dataMat)
min_x = min(dataMat[:, 1])[0, 0]
max_x = max(dataMat[:, 1])[0, 0]
xcoord1 = []; ycoord1 = []
xcoord2 = []; ycoord2 = []
for i in range(m):
if int(laberMat[i, 0]) == 0:
xcoord1.append(dataMat[i, 1]); ycoord1.append(dataMat[i, 2])
elif int(laberMat[i, 0]) == 1:
xcoord2.append(dataMat[i, 1]); ycoord2.append(dataMat[i, 2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcoord1, ycoord1, s=30, c="red", marker="s")
ax.scatter(xcoord2, ycoord2, s=30, c="green")
x = numpy.arange(min_x, max_x, 0.1)
y = (-weights[0] - weights[1]*x) / weights[2]
ax.plot(x, y)
plt.xlabel("x1"); plt.ylabel("x2")
plt.show()
if __name__ == "__main__":
dataMat, laberMat = loadData()
#weights = gradAscent(dataMat, laberMat, maxCycle=500)
#weights = stocGradAscent(dataMat, laberMat)
weights = betterStocGradAscent(dataMat, laberMat, numIter=80)
show(dataMat, laberMat, weights)
未优化的程序结果如下,
随机梯度上升算法(降低了迭代的次数,算法较快,但结果不够准确)结果如下,
对$\alpha$进行优化,动态调整步长(同样降低了迭代次数,但是由于代码采用动态调整alpha,提高了结果的准确性),结果如下
logistic回归的更多相关文章
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...
- Logistic回归 python实现
Logistic回归 算法优缺点: 1.计算代价不高,易于理解和实现2.容易欠拟合,分类精度可能不高3.适用数据类型:数值型和标称型 算法思想: 其实就我的理解来说,logistic回归实际上就是加了 ...
- Logistic回归的使用
Logistic回归的使用和缺失值的处理 从疝气病预测病马的死亡率 数据集: UCI上的数据,368个样本,28个特征 测试方法: 交叉测试 实现细节: 1.数据中因为存在缺失值所以要进行预处理,这点 ...
- 如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...
- SPSS数据分析—配对Logistic回归模型
Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...
- SPSS数据分析—多分类Logistic回归模型
前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logi ...
- SPSS数据分析—二分类Logistic回归模型
对于分类变量,我们知道通常使用卡方检验,但卡方检验仅能分析因素的作用,无法继续分析其作用大小和方向,并且当因素水平过多时,单元格被划分的越来越细,频数有可能为0,导致结果不准确,最重要的是卡方检验不能 ...
- Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
随机推荐
- linux系统加快大文件的写入速度
linux系统加快大文件的写入速度 setvbuf进行优化内存IO
- OpenCv遍历图像小结
参考:http://www.cnblogs.com/ronny/p/opencv_road_2.html http://blog.csdn.net/xiaowei_cqu/article/detail ...
- (UWP开发)在ListView中通过向右滑动展开汉堡菜单
首先在移动APP开发中,手势滑动已经成为一个必备的技能,无论大大小小的APP都需要拥有手势滑动功能.在Android和iOS操作系统的APP中,手势滑动比较普及.然而由于国内有关UWP应用的教程比较少 ...
- 六个漂亮的 ES6 技巧
六个漂亮的 ES6 技巧 转载 原文:2ality 译文:众成翻译 链接:http://www.zcfy.cc/article/346 在这篇文章里,我将演示 6 种 ES6 新特性的使用技巧.在每个 ...
- 20个高级Java面试题汇总
程序员面试指南:https://www.youtube.com/watch?v=0xcgzUdTO5MJava面试问题集合指南:https://www.youtube.com/watch?v=GnR4 ...
- Fragment滑动切换简单案例
Fragment的产生与介绍Android运行在各种各样的设备中,有小屏幕的手机,超大屏的平板甚至电视.针对屏幕尺寸的差距,很多情况下,都是先针对手机开发一套App,然后拷贝一份,修改布局以适应平板神 ...
- 使用GizwitsOpenAPI,快速开发轻应用
导读:使用机智云提供的Open API(Http / WebSocket),可以快速开发网页或微信应用等基于html的轻应用,用于管理和控制智能设备.机智云 Open API 主要帮助开发者通过 HT ...
- js字符串格式化扩展方法
平时使用js的时候会遇到很多需要拼接字符串的时候,如果是遇到双引号和单引号混合使用,经常会搞混.在C#中有string.Format方法,使用起来非常方便,也很容易理解,所以找到一种参考C#的form ...
- 浅谈CSS hack(浏览器兼容)
今天简单写一点关于浏览器兼容的处理方法,虽然百度上已经有很多,但是我还是要写! 先看一个图 这个图描述了2016年1月至8月网民们所使用的浏览器市场份额(来源:http://tongji.baidu. ...
- Unity3D 脚本编译器无法关联VisualStudio2012解决办法
开发环境:Win8 + Unity 4.34f1 +Visual Studio2012 旗舰版 解决办法: 1.创建一个start.bat文件,内容为:[start "" %* ...