GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国

GSS4 - Can you answer these queries IV

题目链接:https://www.luogu.org/problemnew/show/SP2713

线段树经典题目,然而被我用分块A了.

对于区间开根号,\(1e18\)最多会被开\(6\)次就会成为\(1\),成为\(1\)后,再开根号也是\(1\),0开根号也是0,线段树(分块)维护区间所有的数是否全部小于等于1,如果不是,就暴力更新,如果是,那就不要更新这个区间.

时间复杂度\(O(\sqrt n * n)\)

分块CODE:

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define ll long long
const int maxN = 100000 + 7;
ll a[maxN];
bool is_sqrt[maxN];
int L[maxN],R[maxN],belong[maxN];
ll sum[maxN];
int num[maxN]; inline ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {if(c == '-')f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * f;
} ll Query(int l,int r) {
int b_l = belong[l],b_r = belong[r];
ll ans = 0;
if(b_l == b_r) {
for(int i = l;i <= r;++ i)
ans += a[i];
return ans;
}
for(int i = b_l + 1;i < b_r;++ i) ans += sum[i];
for(int i = l;i <= R[b_l];++ i) ans += a[i];
for(int i = L[b_r];i <= r;++ i) ans += a[i];
return ans;
} void Inter_sqrt(int l,int r) {
int b_l = belong[l],b_r = belong[r];
if(b_l == b_r) {
if(is_sqrt[b_l]) return;
for(int i = l;i <= r;++ i) {
if(a[i] == 1) continue;
sum[b_l] -=a[i];
a[i] = sqrt(a[i]);
sum[b_l] += a[i];
if(a[i] == 1) num[b_l] ++;
}
if(num[b_l] == R[b_l] - L[b_l] + 1) is_sqrt[b_l] = true;
return;
}
for(int i = b_l + 1;i < b_r;++ i) {
if(is_sqrt[i]) continue;
for(int j = L[i];j <= R[i];++ j) {
if(a[j] == 1) continue;
sum[i] -=a[j];
a[j] = sqrt(a[j]);
sum[i] += a[j];
if(a[j] == 1) num[i] ++;
}
if(num[i] == R[i] - L[i] + 1) is_sqrt[i] = true;
}
for(int i = l;i <= R[b_l];++ i) {
if(a[i] == 1) continue;
sum[b_l] -=a[i];
a[i] = sqrt(a[i]);
sum[b_l] += a[i];
if(a[i] == 1) num[b_l] ++;
}
if(num[b_l] == R[b_l] - L[b_l] + 1) is_sqrt[b_l] = true; for(int i = L[b_r];i <= r;++ i) {
if(a[i] == 1) continue;
sum[b_r] -=a[i];
a[i] = sqrt(a[i]);
sum[b_r] += a[i];
if(a[i] == 1) num[b_r] ++;
}
if(num[b_r] == R[b_r] - L[b_r] + 1) is_sqrt[b_r] = true;
} int main() {
int tot = 0;
int n;
while(scanf("%d",&n) == 1) {
printf("Case #%d:\n",++ tot);
memset(num,0,sizeof(num));
memset(L,0,sizeof(L));
memset(R,0,sizeof(R));
memset(sum,0,sizeof(sum));
memset(is_sqrt,0,sizeof(is_sqrt));
int q = sqrt(n);
for(int i = 1;i <= n;++ i)
a[i] = read();
for(int i = 1;i <= n;++ i){
belong[i] = i / q + 1;
sum[belong[i]] += a[i];
if(a[i] == 1) num[belong[i]] ++;
}
for(int i = 1;i <= n;++ i) R[belong[i]] = i;
for(int i = n;i >= 1;-- i) L[belong[i]] = i;
int m = read();
int opt,l,r;
while(m --) {
opt = read();l = read();r = read();
if(l > r) std::swap(l,r);
if(opt) printf("%lld\n",Query(l,r));
else Inter_sqrt(l,r);
}
}
return 0;
}

luogu4145上帝造题的七分钟2 / 花神游历各国

用分块很难水过,我们用线段树维护区间最大值即可.

线段树CODE:

#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#define max(a,b) a > b ? a : b
#define ll long long
const ll maxN = 100000 + 7;
using namespace std; struct Node{
ll l,r;
ll sum;
ll maxx;
}tree[maxN << 2];
ll a[maxN]; void swap(ll &a,ll &b) {
ll k = b;
b = a;
a = k;
} inline ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {if(c == '-')f = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * f;
} void updata(ll now) {
tree[now].sum = tree[now << 1].sum + tree[now << 1 | 1].sum;
tree[now].maxx = max(tree[now << 1 | 1].maxx,tree[now << 1].maxx);
} void build(ll l,ll r,ll now) {
tree[now].l = l;
tree[now].r = r;
if(l == r) {
tree[now].sum = a[l];
tree[now].maxx = a[l];
return ;
}
ll mid = (l + r) >> 1;
build(l,mid,now << 1);
build(mid + 1,r,now << 1 | 1);
updata(now);
} ll Query(ll l,ll r,ll now) {
if(tree[now].l >= l && tree[now].r <= r) return tree[now].sum;
ll mid = (tree[now].l + tree[now].r) >> 1;
ll sum = 0;
if(l <= mid) sum += Query(l,r,now << 1);
if(r > mid) sum += Query(l,r,now << 1 | 1);
return sum;
} void work(ll now) {
if(tree[now].l == tree[now].r) {
ll L = tree[now].l;
a[L] = sqrt(a[L]);
tree[now].sum = a[L];
tree[now].maxx = a[L];
return;
}
if(tree[now << 1].maxx > 1) work(now << 1);
if(tree[now << 1 | 1].maxx > 1) work(now << 1 | 1);
updata(now);
return ;
} void Inter_sqrt(ll l,ll r,ll now) {
if(tree[now].l >= l && tree[now].r <= r) {
if( tree[now].maxx > 1 ) work(now);
return ;
}
ll mid = (tree[now].l + tree[now].r) >> 1;
if(l <= mid) Inter_sqrt(l,r,now << 1);
if(r > mid) Inter_sqrt(l,r,now << 1 | 1);
updata(now);
return;
} int main() {
ll n = read();
for(ll i = 1;i <= n;++ i)
a[i] = read();
build(1,n,1);
ll m = read();
ll opt,l,r;
while(m --) {
opt = read();l = read();r = read();
if(l > r)swap(l,r);
if(opt == 1) printf("%lld\n",Query(l,r,1));
else Inter_sqrt(l,r,1);
}
return 0;
} /*
10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8
*/

GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)的更多相关文章

  1. 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国

    SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...

  2. 洛谷P4145 上帝造题的七分钟2 / 花神游历各国(重题:洛谷SP2713 GSS4 - Can you answer these queries IV)

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  3. 上帝造题的七分钟2/花神游历各国/GSS4 线段树维护区间开方 By cellur925

    题目传送门 或者 另一个传送门 询问区间和都好说.但是开方?? 其实是这样的,一个数(1e9)以内连续开方6次就会变成1,于是我们就可在开方操作上进行暴力修改.暴力修改的意思其实也就是找到叶子节点进行 ...

  4. 【luogu4145】上帝造题的七分钟2 / 花神游历各国--区间开根-线段树

    题目背景 XLk觉得<上帝造题的七分钟>不太过瘾,于是有了第二部. 题目描述 "第一分钟,X说,要有数列,于是便给定了一个正整数数列. 第二分钟,L说,要能修改,于是便有了对一段 ...

  5. luogu4145 上帝造题的七分钟2 (线段树)

    题意:给一个数列,维护两个操作,区间开根号.询问区间和 注意到1e12开根号六次后就变成1,而且根号1等于1 也就是说,就算我们用单点修改,只要跳过1,那么修改的次数最多也就是6n 那么维护一个区间最 ...

  6. 题解【luogu4145 上帝造题的七分钟2(花神游历各国)】

    题目大意: 一个序列,支持区间开方与求和操作. 算法:线段树实现开方修改与区间求和 分析: 显然,这道题的求和操作可以用线段树来维护 但是如何来实现区间开方呢 大家有没有这样的经历:玩计算器的时候,把 ...

  7. GSS4 - Can you answer these queries IV(线段树懒操作)

    GSS4 - Can you answer these queries IV(线段树懒操作) 标签: 线段树 题目链接 Description recursion有一个正整数序列a[n].现在recu ...

  8. SP2713 GSS4 - Can you answer these queries IV(线段树)

    传送门 解题思路 大概就是一个数很少次数的开方会开到\(1\),而\(1\)开方还是\(1\),所以维护一个和,维护一个开方标记,维护一个区间是否全部为\(1/0\)的标记.然后每次修改时先看是否有全 ...

  9. SPOJ GSS4 Can you answer these queries IV

    Time Limit: 500MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Description You are g ...

随机推荐

  1. 【POJ - 3040】Allowance(贪心)

    Allowance 原文是English,这里就放Chinese了 Descriptions: 作为创纪录的牛奶生产的奖励,农场主约翰决定开始给Bessie奶牛一个小的每周津贴.FJ有一套硬币N种(1 ...

  2. FONT 字体颜色大全

    用这句代码 替换 AmericanTypewriter-Bold字段就会有不同的字体样式 _typeLabel.font = [UIFont fontWithName:]; Font Family: ...

  3. php—cURL库基本用法总结

    作用 用来连接客户端和服务器端,实从互联网上获取资源 常用接口 curl_init(): 初始化curl curl_close: 结束curl,释放资源 curl_setopt: 设置curl的属性 ...

  4. centos7安装mysql5.7 使用yum

    https://blog.csdn.net/z13615480737/article/details/78906598 使用yum,比较简单,不用考虑版本依赖问题

  5. ASP.NET页面传值的方法

    ASP.NET页面传值的方法 From:Refresh-air 在面试的时候,经常会遇到这样的问题,其实我们会对其中的几种方法比较熟悉,因为项目中经常使用.但是要全面的回答ASP.NET中页面传值的方 ...

  6. 使用JDBC进行简单的增删改查

    JDBC为java的基础.用jdbc实现对数据库的增删改查的功能是程序员的基本要求.本例以mysql为例,首先要使用本例需要添加mysql-connector-java-5.1.7-bin.jar包. ...

  7. CF1080D Olya and magical square

    思路: 构造. 实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; ll sum[]; int ...

  8. 微信支付v3开发(5) 扫码并输入金额支付

    关键字:微信支付 微信支付v3 动态native支付 统一支付 Native支付 prepay_id 作者:方倍工作室 本文介绍微信支付下的扫描二维码并输入自定义金额的支付的开发过程. 注意 微信支付 ...

  9. iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译

    编号 iOS-Apple苹果官方文档翻译名称 博文链接地址 1 苹果API常用英语名词---iOS-Apple苹果官方文档翻译 http://www.cnblogs.com/ChenYilong/p/ ...

  10. 基于Vmware player的Windows 10 IoT core + RaspberryPi2安装部署

    本文记录了基于Vmware Player安装Windows10和VS2015开发平台的过程,以及如何在RaspberryPi2.0上启动Windows10 IoT core系统,并通过一个简单的hel ...