poj 2385 树上掉苹果问题 dp算法
题意:有树1 树2 会掉苹果,奶牛去捡,只能移动w次,开始的时候在树1 问最多可以捡多少个苹果?
思路: dp[i][j]表示i分钟移动j次捡到苹果的最大值
实例分析
0,1 1,2...说明 偶数在树1 奇数在树2
for (int i = 1; i <= n; i++)
{
scanf("%d", &t[i]);
t[i] -= 1;
}
for (int i = 1; i <= n; i++)
for (int j = 0; j <= w; j++)
{
if (j % 2) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1]) + t[i];
else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1]) + !t[i];
}
这里有个小技巧,不是每次要求输入1 2 2 之类的数据,我们把它们都-1 然后就可以就比较好看了
解释一下两句dp语句
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1]) 表示上一次要么在树1 要么在树2的情况,但是我只需要它们两者之间的最大值
解决问题的代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int dp[][];
int t[];
int main()
{
int n, w;
scanf("%d%d", &n, &w);
for (int i = ; i <= n; i++)
{
scanf("%d", &t[i]);
t[i] -= ;
}
for (int i = ; i <= n; i++)
for (int j = ; j <= w; j++)
{
if (j % ) dp[i][j] = max(dp[i - ][j], dp[i - ][j - ]) + t[i];
else dp[i][j] = max(dp[i - ][j], dp[i - ][j - ]) + !t[i];
}
printf("%d\n", dp[n][w]);
}
poj 2385 树上掉苹果问题 dp算法的更多相关文章
- poj 3280 回文字符串问题 dp算法
题意:给一个字符串,构成回文(空也是回文) 其中增删都需要代价.问:代价最少? 思路:把字符串s变空 dp[i][j]表示变成回文的最小代价 for(i=m-1;i>=0;--i) ...
- poj 3616 奶牛产奶问题 dp算法
题意:奶牛产奶,农夫有m个时间段可以挤奶,在工作时间 f t 内产奶量为m,每次挤完奶后,奶牛需要休息R.问:怎么安排使得产奶量最大? 思路:区间dp dp[i]表示第i个时段 对农夫工作的结束时间 ...
- poj 3176 三角数和最大问题 dp算法
题意:给一个三角形形状的数字,从上到下,要求数字和最大 思路 :dp dp[i+1][j]=max(dp[i+1][j],dp[i][j]+score[i+1][j]) dp[i+1][j+1]=ma ...
- poj 2385 Apple Catching(记录结果再利用的动态规划)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时 ...
- POJ - 2385 Apple Catching (dp)
题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...
- poj 2385【动态规划】
poj 2385 Apple Catching Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14007 Accepte ...
- 【POJ - 2385】Apple Catching(动态规划)
Apple Catching 直接翻译了 Descriptions 有两棵APP树,编号为1,2.每一秒,这两棵APP树中的其中一棵会掉一个APP.每一秒,你可以选择在当前APP树下接APP,或者迅速 ...
- dfs与dp算法之关系与经典入门例题
目录 声明 dfs与dp的关系 经典例题-数字三角形 - POJ 1163 题目 dfs思路 解题思路 具体代码 dp思路 解题思路 具体代码 声明 本文不介绍dfs.dp算法的基础思路,有想了解的可 ...
- 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...
随机推荐
- 写TXT文件
#region 写日志 private static void writelog(string strwrite) { string strPath = "d:/log.txt"; ...
- 【转】 Oracle 中的一些重要V$ 动态性能视图,系统视图和表
v$database:数据库的信息,如数据库名,创建时间等. v$instance 实例信息,如实例名,启动时间. v$parameter 参数信息,select * from v$parameter ...
- springIOC+Mysql+springmvc事务测试题总结
1.关于http1.1和1.0的长连接和短连接 两个都支持长连接和短连接 http1.0默认为短连接,也就是说,浏览器和服务器每进行一次HTTP操作,就建立一次连接,任务结束就中断连接 http1.1 ...
- JAVA基础之网络通信协议--TCP与UDP
个人理解: 了解区分UDP与TCP的不同,正常情况都是两者结合的使用模式!为了更好的传输,经常会开多线程进行传输的! 一.网络通信协议: 1.TCP/IP协议: 四层:应用层.传输层.网络层和链路层: ...
- 终于有人把P2P、P2C、O2O、B2C、B2B、C2C的区别讲透了!还有许多其它类别的类型分享
平时在看招聘时,经常看到我们是什么B2C电子商务网站,但是一直不知是啥意思,今天在WEB开发者上面看到这篇文章,就是知道了个所以然,以记录分享. P2P.P2C .O2O .B2C.B2B. C2C, ...
- Class 学习 (Es6阮一峰)
es5 构造函数 实例: function Point(x, y) { this.x = x; this.y = y; } Point.prototype.toString = function () ...
- 64位Windows系统下32位应用程序连接MySql
1.首先得安装“Connector/ODBC”,就是Mysql的ODBC驱动,这个是与应用程序相关的,而不是与操作系统相关的,也就是说,不管你的系统是x64还是x86,只要你的应用程序是x86的那么, ...
- UVA 10037 Bridge (基础DP)
题意: 过河模型:有n个人要渡河,每个人渡河所耗时可能不同,只有1只船且只能2人/船,船速取决于速度慢的人.问最少耗时多少才能都渡完河? 思路: n<2的情况比较简单. 考虑n>2的情况, ...
- Java 文件操作-File
1.File文件操作 java.io.File用于表示文件(目录),也就是说程序员可以通过File类在程序中操作硬盘上的文件和目录.File类只用于表示文件(目录)的信息(名称.大小等),不能对文件的 ...
- python基础教程总结15——6 CGI远程编辑
功能: 将文档作为普通网页显示: 在web表单的文本域内显示文档: 保存表单中的文本: 使用密码保护文档: 容易拓展,支持处理多余一个文档的情况 1.CGI CGI(Comment Gateway I ...