Solution

这道题有两个关键点:

  • 如何找到以原串某一个位置为结尾的某个子序列的最晚出现位置
  • 如何找到原串中某个位置之前的所有数字的最晚出现位置中的最大值

第一个关键点: 我们注意到每个数字在\(M\)和\(L\)中最多只会出现一次. 以\(M\)为例, 我们从前往后逐位在原串中匹配, 数组f[i]表示\(M\)的前\(i\)位在原串中当前位置之前的最晚出现位置. 假设当前数字\(x\)在\(M\)中出现位置为\(p\), 则

\[f[p] = \begin{cases} f[p] = i, \ p == 1 \\ f[p] = f[p - 1], \ p > 1 \end{cases}
\]

至于其他长度的子序列, 其最晚出现位置并不会发生变化.

第二个关键点: 我们记录每个数字的最晚出现位置即可.

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm> using namespace std;
namespace Zeonfai
{
inline int getInt()
{
int a = 0, sgn = 1; char c;
while(! isdigit(c = getchar())) if(c == '-') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const int N = (int)1e6, M = (int)1e6;
int main()
{ #ifndef ONLINE_JUDGE freopen("prz.in", "r", stdin);
freopen("prz.out", "w", stdout); #endif using namespace Zeonfai;
int len = getInt(), m = getInt();
static int a[N + 1], s[N + 1], t[N + 1];
for(int i = 1; i <= len; ++ i) a[i] = getInt();
int lenS = getInt(), lenT = getInt();
for(int i = 1; i <= lenS; ++ i) s[i] = getInt();
for(int i = 1; i <= lenT; ++ i) t[i] = getInt();
static int mp[N + 1]; memset(mp, -1, sizeof(mp));
for(int i = 1; i <= lenS; ++ i) mp[s[i]] = i;
static int rec[N + 1]; memset(rec, -1, sizeof(rec));
static int f[N + 1], g[N + 1];
for(int i = 1; i <= len; ++ i)
{
if(~ mp[a[i]])
{
if(mp[a[i]] == 1) rec[mp[a[i]]] = i;
else rec[mp[a[i]]] = rec[mp[a[i]] - 1];
}
f[i] = rec[lenS];
}
memset(mp, -1, sizeof(mp));
for(int i = 1; i <= lenT; ++ i) mp[t[i]] = i;
memset(rec, -1, sizeof(rec));
for(int i = len; i; -- i)
{
if(~ mp[a[i]])
{
if(mp[a[i]] == 1) rec[mp[a[i]]] = i;
else rec[mp[a[i]]] = rec[mp[a[i]] - 1];
}
g[i] = rec[lenT];
}
memset(mp, -1, sizeof(mp));
for(int i = len; i; -- i) if(mp[a[i]] == -1) mp[a[i]] = i;
static int lst[N + 1]; lst[0] = -1;
for(int i = 1; i <= len; ++ i) lst[i] = max(mp[a[i]], lst[i - 1]);
int cnt = 0; static int ans[N];
for(int i = 1; i <= len; ++ i) if(~ f[i] && ~ g[i] && a[i] == s[lenS] && lst[f[i] - 1] > g[i]) ans[cnt ++] = i;
printf("%d\n", cnt);
for(int i = 0; i < cnt; ++ i) printf("%d ", ans[i]);
}

2016集训测试赛(二十四)Problem B: Prz的更多相关文章

  1. 2016北京集训测试赛(十四)Problem B: 股神小D

    Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大 ...

  2. 2016北京集训测试赛(十四)Problem A: 股神小L

    Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...

  3. 2016集训测试赛(十九)Problem C: 无聊的字符串

    Solution 傻X题 我的方法是建立后缀后缀树, 然后在DFS序列上直接二分即可. 关键在于如何得到后缀树上每个字符对应的字节点: 我们要在后缀自动机上记录每个点在后缀树上对应的字母. 考虑如何实 ...

  4. 2016集训测试赛(十九)Problem A: 24点大师

    Solution 这到题目有意思. 首先题目描述给我们提供了一种非常管用的模型. 按照题目的方法, 我们可以轻松用暴力解决20+的问题; 关键在于如何构造更大的情况: 我们发现 \[ [(n + n) ...

  5. 2016集训测试赛(十八)Problem C: 集串雷 既分数规划学习笔记

    Solution 分数规划经典题. 话说我怎么老是忘记分数规划怎么做呀... 所以这里就大概写一下分数规划咯: 分数规划解决的是这样一类问题: 有\(a_1, a_2 ... a_n\)和\(b_1, ...

  6. 2016北京集训测试赛(十)Problem A: azelso

    Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...

  7. 2016集训测试赛(二十四)Problem C: 棋盘控制

    Solution 场上的想法(显然是错的)是这样的: 我们假设棋子是一个一个地放置的, 考虑在放置棋子的过程中可能出现哪些状态. 我们令有序整数对\((i, j)\)表示总共控制了\(i\)行\(j\ ...

  8. 2016集训测试赛(二十六)Problem A: bar

    Solution 首先审清题意, 这里要求的是子串而不是子序列... 我们考虑用1表示p, -1表示j. 用sum[i]表示字符串前\(i\)的前缀和. 则我们考虑一个字符串\([L, R]\)有什么 ...

  9. 2016集训测试赛(二十)Problem B: 字典树

    题目大意 你们自己感受一下原题的画风... 我怀疑出题人当年就是语文爆零的 下面复述一下出题人的意思: 操作1: 给你一个点集, 要你在trie上找到所有这样的点, 满足点集中存在某个点所表示的字符串 ...

随机推荐

  1. TCP/IP网络编程之地址族与数据序列

    分配IP地址和端口号 IP是Internet Protocol(网络协议)的简写,是为收发网络数据而分配给计算机的值.端口号并非赋予计算机的值,而是为区分程序中创建的套接字而分配给套接字的序号 网络地 ...

  2. 友推在Android 实现微信等分享代码的常见问题

    介绍,最近 做了一个项目,需要集成分享功能.果断选择 友推. 集成过程,参考友推官方提供的集成文档即可 废话不多说,主要说一下自己在集成过程中遇到的一些问题,主要有两个: 问题1. 引入youtui- ...

  3. mini购物车程序

    product_list=[("Iphohe",5800),("Mac Pro Book",12900), ("xiaomi 4c",120 ...

  4. Python+Selenium练习篇之14-获取当前页面的title

    前面文章介绍了如何获取当前页面的URL的值,本文介绍如何获取当前页面的title,这个也可以作为测试结果的依据,通过得到的title和预期的值对比,可以支持我们判断页面跳转正确. 相关脚本代码如下: ...

  5. js判断时间是否过期

    var myDate=new Date(); myDate.setFullYear(2014,2,1); //2014年3月1日 //注意:表示月份的参数介于 0 到 11 之间.也就是说,如果希望把 ...

  6. Unity3D - 设计模式 - 工厂模式

    工厂模式:以食物生产为例 1. 一个生产食物的工厂(此项 需要建立两个类:食物基类<Food>,工厂类<Factory>) 2. 可以生产不同的食物(此项 建立食物的具体子类, ...

  7. iOS---Objective-C: +load vs +initialize

    在 NSObject 类中有两个非常特殊的类方法 +load 和 +initialize ,用于类的初始化.这两个看似非常简单的类方法在许多方面会让人感到困惑,比如: 子类.父类.分类中的相应方法什么 ...

  8. 简单Dp----最长公共子序列,DAG最长路,简单区间DP等

    /* uva 111 * 题意: * 顺序有变化的最长公共子序列: * 模板: */ #include<iostream> #include<cstdio> #include& ...

  9. 小白逛公园加强版(park)

    小白逛公园加强版(park) 题目描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦--在小新家附近有n个公园,这些公园通过一些路径相连,并保证每两个公园之间有且仅有一条通路相连(也就是说这是一棵树), ...

  10. tomcat镜像构建

    1.目录结构与配置文件如下 [root@centos05 java]# tree . ├── apache-tomcat-.tar.gz ├── Dockerfile ├── jdk-8u45-lin ...