Red John has committed another murder. But this time, he doesn't leave a red smiley behind. What he leaves behind is a puzzle for Patrick Jane to solve. He also texts Teresa Lisbon that if Patrick is successful, he will turn himself in. The puzzle begins as follows.

There is a wall of size 4xN in the victim's house where. The victim also has an infinite supply of bricks of size 4x1 and 1x4 in her house. There is a hidden safe which can only be opened by a particular configuration of bricks in the wall. In every configuration, the wall has to be completely covered using the bricks. There is a phone number written on a note in the safe which is of utmost importance in the murder case. Gale Bertram wants to know the total number of ways in which the bricks can be arranged on the wall so that a new configuration arises every time. He calls it M. Since Red John is back after a long time, he has also gained a masters degree in Mathematics from a reputed university. So, he wants Patrick to calculate the number of prime numbers (say P) up to M (i.e. <= M). If Patrick calculates P, Teresa should call Red John on the phone number from the safe and he will surrender if Patrick tells him the correct answer. Otherwise, Teresa will get another murder call after a week.

You are required to help Patrick correctly solve the puzzle.

Input

The first line of input will contain an integer T followed by T lines each containing an integer N. 1<=T<=20, 1<=N<=40

Output

Print exactly one line of output for each test case. The output should contain the number P.

Sample test(s)

input

2
1
7

output

0
3

Note

For N = 1, the brick can be laid in 1 format only

The number of primes <= 1 is 0 and hence the answer.

For N = 7, one of the ways in which we can lay the bricks is

There are 5 ways of arranging the bricks for N = 7 and there are 3 primes <= 5 and hence the answer 3.

Source : Hackerrank.com

Contest arranged by প্রোগ্রামিং প্রবলেম (Programming Problem in Bengali)

题意:给定4*N的空格子,现在叫你用1*4或者4*1的板子去填放,问有多少种放法M,输出小于M的素数个数pM。

思路:如果是2*N用1*2或者2*1格子填的题,推出是斐波拉契数列。其特点是如果横着放,那么上下连续几块都要横着放。此题即是对于1*N的格子,用1*4的格子填有多少种方案。dp记录即可。

(今天啦啦操表演,所以emm,刷刷水题。

  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. const int maxn=;
  4. const int maxm=;
  5. int dp[maxn][maxn],sum[maxn];
  6. int p[maxm],vis[maxm+],num[maxm],tot;
  7. void prime()
  8. {
  9. for(int i=;i<=maxm;i++){
  10. if(!vis[i]) p[++tot]=i;
  11. for(int j=;j<=tot&&i*p[j]<=maxm;j++){
  12. vis[i*p[j]]=;
  13. if(i%p[j]==) break;
  14. }
  15. num[i]=num[i-]+(-vis[i]);
  16. }
  17. }
  18. int main()
  19. {
  20. int T,N,i,j,k;
  21. prime();
  22. for(i=;i<=;i++) dp[i][]=;
  23. for(i=;i<=;i++){
  24. for(j=i*;j<=;j++)
  25. for(k=(i-)*;k<=j-;k++)
  26. dp[j][i]+=dp[k][i-];
  27. }
  28. for(i=;i<=;i++){
  29. for(j=;j<=i;j++)
  30. for(k=;k<=j/;k++)
  31. sum[i]+=dp[j][k];
  32. sum[i]+=;
  33. }
  34. scanf("%d",&T);
  35. while(T--){
  36. scanf("%d",&N);
  37. printf("%d\n",num[sum[N]]);
  38. }
  39. return ;
  40. }

SPOJ:Red John is Back(DP)的更多相关文章

  1. spoj 1812 LCS2(SAM+DP)

    [题目链接] http://www.spoj.com/problems/LCS2/en/ [题意] 求若干个串的最长公共子串. [思路] SAM+DP 先拿个串建个SAM,然后用后面的串匹配,每次将所 ...

  2. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

  3. HZAU 1199 Little Red Riding Hood(DP)

    Little Red Riding Hood Time Limit: 1 Sec  Memory Limit: 1280 MBSubmit: 853  Solved: 129[Submit][Stat ...

  4. 【BZOJ1419】 Red is good [期望DP]

    Red is good Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 桌面上有R张红牌和B张 ...

  5. 计蒜客 Red Black Tree(树形DP)

    You are given a rooted tree with n nodes. The nodes are numbered 1..n. The root is node 1, and m of ...

  6. 【BZOJ 1419】Red is good [概率DP]

    我 是 Z Z 概率好玄啊(好吧是我太弱.jpg Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻 ...

  7. SPOJ 1435 Vertex Cover 树形DP

    i 表示节点 i ,j=0表示不选择其父节点,j=1表示选择其父节点.f 为其父节点. 取 每个节点选择/不选择 两者中较小的那个. 一组数据: 151 21 31 41 1010 910 1112 ...

  8. spoj 10606 Balanced Numbers 数位dp

    题目链接 一个数称为平衡数, 满足他各个数位里面的数, 奇数出现偶数次, 偶数出现奇数次, 求一个范围内的平衡数个数. 用三进制压缩, 一个数没有出现用0表示, 出现奇数次用1表示, 出现偶数次用2表 ...

  9. SPOJ.TLE - Time Limit Exceeded(DP 高维前缀和)

    题目链接 \(Description\) 给定长为\(n\)的数组\(c_i\)和\(m\),求长为\(n\)的序列\(a_i\)个数,满足:\(c_i\not\mid a_i,\quad a_i\& ...

随机推荐

  1. css3 - 语言伪类选择器

    <!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...

  2. mysql freeing items 状态

    http://blog.sina.com.cn/s/blog_6128a8f00100wsdd.html数据库出现大量的freeing items状态 表更新慢 而且大量锁表查看mysql官方free ...

  3. C++零基础到入门

    (1)C语言概述 (2)编写.运行一个简单的C语言程序 (3)数据类型 (4)运算符和表达式 如果你对C语言一窍不通,那你就好好看这篇文章,我会力争让你真正的做到从零基础到入门,同时这篇文章会让你基本 ...

  4. Laravel建站04--建立后台文章管理

    路由配置 Route::group(['middleware' => 'auth', 'namespace' => 'Admin', 'prefix' => 'admin'], fu ...

  5. kubernetes对象之secrets

    系列目录 Secrets是Kubernetes中一种对象类型,用来保存密码.私钥.口令等敏感信息.与直接将敏感信息嵌入image.pod相比,Secrets更安全.更灵活,用户对敏感信息的控制力更强. ...

  6. OpenWrt:路由器上的Linux

    官网:https://openwrt.org/ 适于嵌入式设备的一个Linux发行版,可刷无线路由器. 相对原厂固件而言,OpenWrt不是一个单一.静态的固件,而是提供了一个可添加软件包的可写的文件 ...

  7. 网络协议之rtp---h264的rtp网络协议实现

    完整的C/S架构的基于RTP/RTCP的H.264视频传输方案.此方案中,在服务器端和客户端分别进行了功能模块设计.服务器端:RTP封装模块主要是对H.264码流进行打包封装:RTCP分析模块负责产牛 ...

  8. 防止ViewPager中的Fragment被销毁

    pager.setOffscreenPageLimit(2); 就可以让ViewPager多缓存一个页面

  9. js中变量的声明

    大家都知道js中变量的声明是要提前的,下面有4个样例: 1.if(!"t" in window){  var t = 1; }       alert(t);答案是undefine ...

  10. 《AndroidStudio有用指南》反馈问题和建议

    <AndroidStudio有用指南>反馈问题和建议 IntelliJ IDEA在持续更新, Android Studio也在持续更新, 本书也将会持续更新. Android Studio ...