You are given an integer sequence a1,a2,…,ana1,a2,…,an.

Find the number of pairs of indices (l,r)(l,r) (1≤l≤r≤n1≤l≤r≤n) such that the value of median of al,al+1,…,aral,al+1,…,ar is exactly the given number mm.

The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.

For example, if a=[4,2,7,5]a=[4,2,7,5] then its median is 44 since after sorting the sequence, it will look like [2,4,5,7][2,4,5,7] and the left of two middle elements is equal to 44. The median of [7,1,2,9,6][7,1,2,9,6] equals 66 since after sorting, the value 66 will be in the middle of the sequence.

Write a program to find the number of pairs of indices (l,r)(l,r) (1≤l≤r≤n1≤l≤r≤n) such that the value of median of al,al+1,…,aral,al+1,…,ar is exactly the given number mm.

Input

The first line contains integers nn and mm (1≤n,m≤2⋅1051≤n,m≤2⋅105) — the length of the given sequence and the required value of the median.

The second line contains an integer sequence a1,a2,…,ana1,a2,…,an (1≤ai≤2⋅1051≤ai≤2⋅105).

Output

Print the required number.

Examples

Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97

Note

In the first example, the suitable pairs of indices are: (1,3)(1,3), (1,4)(1,4), (1,5)(1,5), (2,2)(2,2), (2,3)(2,3), (2,5)(2,5), (4,5)(4,5) and (5,5)(5,5).

题意:给定N,M,已经N个数。问有多少哥区间,排序后其中位数是M。

思路:这个序列中如果只有一个M,那么可以理由前缀和的思路求解。我们把大于M的数看成1,小于M的数看成-1,那么问题就成了有多少个区间的区间和为0或者1,直接用map搞前缀和即可。现在有多个M,那么再这么搞可能会重复。

我们把此题用函数的思想来搞,同样的,把大于等于M的数看成1,小于M的数看成-1,令F(x)表示M=x的时候,有多少个区间和大于0。

那么结果就是F(M)-F(M+1)。那么现在问题就算求解函数F。

对于函数F(x),把大于大于x的数转化为1,否则为-1,那么现在数列是一系列的1和-1串,记录前缀和,然后可以用树状数组搞定即可,复杂度为O(N*lgN)。

但是由于只有1和-1,我们耶可以利用其特殊性,保留有效信息,把复杂度做到O(N);now表示前缀和,delta表示前面有多个位置可以满足区间和大于0,sum[x]表示前缀和为x的个数,那么新加入一个1时,delta显然会增加sum[now]个,然后now++。 加入一个-1时,delta会减少sum[now-1]个,now--。

(此题转化为函数的思想,然后做减法,妙的。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
int N,M,a[maxn],sum[maxn]; ll ans;
ll solve(int num)
{
memset(sum,,sizeof(sum));
int now=N; ll res=,delta=; sum[now]=;
for(int i=;i<=N;i++){
if(a[i]>=num) delta+=sum[now],now++;
else now--,delta-=sum[now];
res+=delta;
sum[now]++;
}
return res;
}
int main()
{
scanf("%d%d",&N,&M);
for(int i=;i<=N;i++) scanf("%d",&a[i]);
printf("%I64d\n",solve(M)-solve(M+));
return ;
}

CodeForces - 1005E2:Median on Segments (General Case Edition) (函数的思想)的更多相关文章

  1. Codeforces 1005 E2 - Median on Segments (General Case Edition)

    E2 - Median on Segments (General Case Edition) 思路: 首先我们计算出solve(m):中位数大于等于m的方案数,那么最后答案就是solve(m) - s ...

  2. Codeforces Round #496 (Div. 3) E2 - Median on Segments (General Case Edition)

    E2 - Median on Segments (General Case Edition) 题目大意:给你一个数组,求以m为中位数的区间个数. 思路:很巧秒的转换,我们把<= m 数记为1, ...

  3. CodeForces -Codeforces Round #496 (Div. 3) E2. Median on Segments (General Case Edition)

    参考:http://www.cnblogs.com/widsom/p/9290269.html 传送门:http://codeforces.com/contest/1005/problem/E2 题意 ...

  4. Codeforces Round #496 (Div. 3 ) E1. Median on Segments (Permutations Edition)(中位数计数)

    E1. Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 25 ...

  5. CF1005E1 Median on Segments (Permutations Edition) 思维

    Median on Segments (Permutations Edition) time limit per test 3 seconds memory limit per test 256 me ...

  6. 贪心/思维题 Codeforces Round #310 (Div. 2) C. Case of Matryoshkas

    题目传送门 /* 题意:套娃娃,可以套一个单独的娃娃,或者把最后面的娃娃取出,最后使得0-1-2-...-(n-1),问最少要几步 贪心/思维题:娃娃的状态:取出+套上(2),套上(1), 已套上(0 ...

  7. 构造 Codeforces Round #310 (Div. 2) B. Case of Fake Numbers

    题目传送门 /* 题意:n个数字转盘,刚开始每个转盘指向一个数字(0~n-1,逆时针排序),然后每一次转动,奇数的+1,偶数的-1,问多少次使第i个数字转盘指向i-1 构造:先求出使第1个指向0要多少 ...

  8. 找规律/贪心 Codeforces Round #310 (Div. 2) A. Case of the Zeros and Ones

    题目传送门 /* 找规律/贪心:ans = n - 01匹配的总数,水 */ #include <cstdio> #include <iostream> #include &l ...

  9. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

随机推荐

  1. (四)DOM对象和jQuery对象

    学习jQuery,需要搞清楚DOM对象和jQuery对象的关系与区别,因为两者的方法并不共用,如果搞不清楚对象类型就会导致调用错误的方法. DOM(Document Object Model)称为文档 ...

  2. ASP.NET MVC深入浅出系列(持续更新) ORM系列之Entity FrameWork详解(持续更新) 第十六节:语法总结(3)(C#6.0和C#7.0新语法) 第三节:深度剖析各类数据结构(Array、List、Queue、Stack)及线程安全问题和yeild关键字 各种通讯连接方式 设计模式篇 第十二节: 总结Quartz.Net几种部署模式(IIS、Exe、服务部署【借

    ASP.NET MVC深入浅出系列(持续更新)   一. ASP.NET体系 从事.Net开发以来,最先接触的Web开发框架是Asp.Net WebForm,该框架高度封装,为了隐藏Http的无状态模 ...

  3. springmvc结合base64存取图片到mysql

    简单介绍: 1.jsp通过MultipartFile上传图片到后台 2.后台把上传的图片通过base64转换成字符串存到mysql 3.从mysql读取图片字符串,通过base64反转成byte数组, ...

  4. org hibernate querytimeoutexception

    起因 在做Hibernate批量插入时,出现这个错误org.hibernate.QueryTimeoutException: 错误原因是表空间的容量不足,需要加大空间容量:那首先想到的是应该查询其容量 ...

  5. 【Android】图片(文件)上传的请求分析结构

    怎么在android中上传文件,即怎么用Java向服务器上传文件.上传图片,这是个老问题了,在网上能搜到现成的代码,很多朋友用起来也比较熟了,但是为什么这么写,可能很多朋友并不清楚,这篇文章就来分析一 ...

  6. React常用方法手记

    1.Reactjs 如何获取子组件的key值?请问antd中table自定义列render方法怎么获取当前第几列? https://segmentfault.com/q/101000000453235 ...

  7. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  8. springcloud微服务实战--笔记

    目前对Springcloud对了解仅限于:“用[注册服务.配置服务]来统一管理其他微服务” 这个水平.有待提高 Springcloud微服务实战这本书是翟永超2017年5月写的,时间已经过去了两年,略 ...

  9. 九度OJ 1077:最大序列和 (DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5600 解决:1637 题目描述: 给出一个整数序列S,其中有N个数,定义其中一个非空连续子序列T中所有数的和为T的"序列和&qu ...

  10. 微信小程序 原生代码 转wepy 字符串处理

    import globimport os cwd = os.getcwd()sep = os.septarget = cwd + sep + 'pages' + sep + '*' + sep + ' ...