Description

 

Problem E: Expressions2007/2008 ACM International Collegiate Programming Contest University of Ulm Local Contest

Problem E: Expressions

Arithmetic expressions are usually written with the operators in between the two operands (which is called infix notation). For example, (x+y)*(z-w) is an arithmetic expression in infix notation. However, it is easier to write a program to evaluate an expression if the expression is written in postfix notation (also known as reverse polish notation). In postfix notation, an operator is written behind its two operands, which may be expressions themselves. For example, x y + z w - * is a postfix notation of the arithmetic expression given above. Note that in this case parentheses are not required.

To evaluate an expression written in postfix notation, an algorithm operating on a stack can be used. A stack is a data structure which supports two operations:

  1. push: a number is inserted at the top of the stack.
  2. pop: the number from the top of the stack is taken out.

During the evaluation, we process the expression from left to right. If we encounter a number, we push it onto the stack. If we encounter an operator, we pop the first two numbers from the stack, apply the operator on them, and push the result back onto the stack. More specifically, the following pseudocode shows how to handle the case when we encounter an operator O:

  1. a := pop();
  2. b := pop();
  3. push(b O a);

The result of the expression will be left as the only number on the stack.

Now imagine that we use a queue instead of the stack. A queue also has a push and pop operation, but their meaning is different:

  1. push: a number is inserted at the end of the queue.
  2. pop: the number from the front of the queue is taken out of the queue.

Can you rewrite the given expression such that the result of the algorithm using the queue is the same as the result of the original expression evaluated using the algorithm with the stack?

Input Specification

The first line of the input contains a number T (T ≤ 200). The following T lines each contain one expression in postfix notation. Arithmetic operators are represented by uppercase letters, numbers are represented by lowercase letters. You may assume that the length of each expression is less than 10000 characters.

Output Specification

For each given expression, print the expression with the equivalent result when using the algorithm with the queue instead of the stack. To make the solution unique, you are not allowed to assume that the operators are associative or commutative.

Sample Input

  1. 2
  2. xyPzwIM
  3. abcABdefgCDEF

Sample Output

  1. wzyxIPM
  2. gfCecbDdAaEBF
  3.  
  4. 根据题目意思,运算符是二元的,故想到使用二叉树结构来存放所有元素。
    根据题目意思,读入二叉树的过程是一个后序遍历的过程,故使用题目描述中的栈结构进行建树。
    根据题目意思,输出过程是从树的最下层网上,一层层将树输出。
    考虑到此处使用的是指针,故没有使用STL里面的队列,构造了Queue类,使用了循环队列。
  5.  
  6. 代码:
  1. #include <iostream>
  2. #include <cstdio>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include <cmath>
  6. #include <algorithm>
  7. #include <set>
  8. #include <map>
  9. #include <vector>
  10. #include <queue>
  11. #include <string>
  12. #define inf 0x3fffffff
  13. #define eps 1e-10
  14.  
  15. using namespace std;
  16.  
  17. struct node
  18. {
  19. char val;
  20. node *left;
  21. node *right;
  22. };
  23.  
  24. struct Queue
  25. {
  26. node *v[10005];
  27. int top;
  28. int rear;
  29. const int N = 10005;
  30. void Init()
  31. {
  32. top = 0;
  33. rear = 0;
  34. }
  35. void Pop()
  36. {
  37. top = (top+1) % N;
  38. }
  39. node *Front()
  40. {
  41. return v[top];
  42. }
  43. void Push(node * a)
  44. {
  45. v[rear] = a;
  46. rear = (rear+1) % N;
  47. }
  48. bool Empty()
  49. {
  50. if (top != rear)
  51. return 0;
  52. else
  53. return 1;
  54. }
  55. }q;
  56.  
  57. node *head, *Stack[10005];
  58. int top;
  59.  
  60. node *Create()
  61. {
  62. top = 0;
  63. char ch;
  64. for (;;)
  65. {
  66. ch = getchar();
  67. if (ch == '\n')
  68. {
  69. return Stack[0];
  70. }
  71. if (ch >= 'a' && ch <= 'z')
  72. {
  73. node *k;
  74. k = (node *)malloc(sizeof(node));
  75. k->val = ch;
  76. k->left = NULL;
  77. k->right = NULL;
  78. Stack[top++] = k;
  79. }
  80. else
  81. {
  82. node *k;
  83. k = (node *)malloc(sizeof(node));
  84. k->val = ch;
  85. k->left = Stack[top-2];
  86. k->right = Stack[top-1];
  87. top -= 2;
  88. Stack[top++] = k;
  89. }
  90. }
  91. }
  92.  
  93. void bfs()
  94. {
  95. q.Init();
  96. q.Push(head);
  97. top = 0;
  98. while (!q.Empty())
  99. {
  100. Stack[top] = q.Front();
  101. q.Pop();
  102. if (Stack[top]->left != NULL)
  103. {
  104. q.Push(Stack[top]->left);
  105. q.Push(Stack[top]->right);
  106. }
  107. top++;
  108. }
  109. }
  110.  
  111. void Output()
  112. {
  113. for (int i = top-1; i >= 0; --i)
  114. printf("%c", Stack[i]->val);
  115. printf("\n");
  116. }
  117.  
  118. int main()
  119. {
  120. //freopen ("test.txt", "r", stdin);
  121. int T;
  122. scanf("%d", &T);
  123. getchar();
  124. for (int times = 1; times <= T; ++times)
  125. {
  126. head = Create();
  127. bfs();
  128. Output();
  129. }
  130. return 0;
  131. }

ACM学习历程——UVA11234 Expressions(栈,队列,树的遍历,后序遍历,bfs)的更多相关文章

  1. 二叉树 Java 实现 前序遍历 中序遍历 后序遍历 层级遍历 获取叶节点 宽度 ,高度,队列实现二叉树遍历 求二叉树的最大距离

    数据结构中一直对二叉树不是很了解,今天趁着这个时间整理一下 许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显 ...

  2. 剑指Offer的学习笔记(C#篇)-- 平衡二叉树(二叉树后序遍历递归详解版)

    题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树. 一 . 题目分析 首先要理解一个概念:什么是平衡二叉树,如果某二叉树中任意的左右子树深度相差不超过1,那么他就是一颗平衡二叉树.如下图: 所以 ...

  3. ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)

    Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...

  4. ACM学习历程—HDU 2795 Billboard(线段树)

    Description At the entrance to the university, there is a huge rectangular billboard of size h*w (h ...

  5. 利用树的先序和后序遍历打印 os 中的目录树

    [0]README 0.1)本代码均为原创,旨在将树的遍历应用一下下以加深印象而已:(回答了学习树的遍历到底有什么用的问题?)你对比下linux 中的文件树 和我的打印结果就明理了: 0.2)我们采用 ...

  6. 二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)

    例题 中序遍历94. Binary Tree Inorder Traversal 先序遍历144. Binary Tree Preorder Traversal 后序遍历145. Binary Tre ...

  7. ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)

    Description Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的 ...

  8. 前、中、后序遍历随意两种是否能确定一个二叉树?理由? && 栈和队列的特点和区别

    前序和后序不能确定二叉树理由:前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树. 由二叉树的中序和前序遍历序列 ...

  9. python实现二叉树的建立以及遍历(递归前序、中序、后序遍历,队栈前序、中序、后序、层次遍历)

    #-*- coding:utf-8 -*- class Node: def __init__(self,data): self.data=data self.lchild=None self.rchi ...

随机推荐

  1. VMware厚置备延迟置零,厚置备置零,精简置备具体解释

    本文具体介绍VMware厚置备延迟置零,厚置备置零,精简置备的概念及选择使用 1.厚置备延迟置零(zeroed thick) 以默认的厚格式创建虚拟磁盘.创建过程中为虚拟磁盘分配所需空间.创建时不会擦 ...

  2. Maven上传本地jar

    1. 将Jar包安装到本地仓库 -- DgroupId和DartifactId构成了该jar包在pom.xml的坐标, 对应依赖的DgroupId和DartifactId    -- Dfile表示需 ...

  3. python学习(十四)面向对象

    Python中的面向对象,先写类,会生成类对象,类对象然后创建对象,对象就可以拿来用了. Python支持多重继承. class语句创建类对象,并将其赋值给变量名. class语句内的赋值语句会创建类 ...

  4. Kindeditor上传图片回显不出来

    原因之一: 图片成功上传但是回显不出来,这个时候,要检查返回的图片地址是否加了http://这个玩意,不然会将原来的头加上图片返回地址.

  5. 说明sizeof和strlen之间的区别。

    解析:由以下几个例子我们说明sizeof和strlen之间的区别.第1个例子: sizeof(ss)结果为4,ss是指向字符串常量的字符指针.sizeof(*ss)结果为1,*ss是第一个字符.第2个 ...

  6. TP框架部分--文件目录及作用

    下载thinkphp3.2.3版本,解压缩后将文件夹名字改为thinkphp,然后放在www目录下,里面的文件夹和文件的名字和作用如下:(前面有Tab健的表示下一级,thinkphp是根目录)//th ...

  7. 【BZOJ3601】一个人的数论 高斯消元+莫比乌斯反演

    [BZOJ3601]一个人的数论 题解:本题的做法还是很神的~ 那么g(n)如何求呢?显然它的常数项=0,我们可以用待定系数法,将n=1...d+1的情况代入式子中解方程,有d+1个方程和d+1个未知 ...

  8. 关于eclipse 插件的挂载

    学习java的时候,不喜欢myeclipse 这种插件,什么都准备好了,自己动手就少了,不利于自己学习,现在我就diy 自己选几个插件来用,基本上就是 eclipse 加上我自己要用的插件,插件的安装 ...

  9. windows下的常用命令

    net start ... 启动某个服务 net stop ... 停止某个服务 net start     查看所有启动的服务 services.msc  打开服务的界面 ipconfig     ...

  10. Eclipse + JDK + tomcat开发环境配置

       第一步:下载jdk和tomcat:JDK下载  Tomcat下载     最新的jdk为1.6.10,tomcat为6.0,建议jdk1.4以上,tomcat4.0以上    第二步:安装和配置 ...