将要学习

关于 Hermite 矩阵的特征值不等式. Weyl 定理 以及推论.

 


Weyl 定理

Hermann Weyl 的如下定理是大量不等式的基础,这些不等式要么涉及两个 Hermite 矩阵之和,要么与加边的 Hermite 矩阵有关.
 
  定理1(Weyl): 设 \(A,B \in M_n\) 是 Hermite 矩阵,又设 \(A,B\) 以及 \(A+B\) 各自的特征值分别是 \(\{\lambda_i(A)\}_{i=1}^n, \{\lambda_i(B)\}_{i=1}^n\) 以及 \(\{\lambda_i(A+B)\}_{i=1}^n\), 它们每一个都按照递增次序排列. 那么,对每一个 \(i=1,\cdots,n\) 就有
\begin{align} \label{e1}
\lambda_i(A+B) \leqslant \lambda_{i+j}(A) + \lambda_{n-j} (B) , \quad j=0,1,\cdots, n-i
\end{align}
其中的等式对某一对 \(i,j\) 成立,当且仅当存在一个非零向量 \(x\),使得 \(Ax=\lambda_{i+j}(A)x\), \(Bx=\lambda_{n-j}(B)x\) 以及 \((A+B)x=\lambda_i(A+B)x\). 又对每一个 \(i=1,\cdots,n\) 有
\begin{align} \label{e2}
\lambda_{i-j+1}(A)+\lambda_j(B) \leqslant \lambda_i(A+B), \quad j=1,\cdots ,i
\end{align}
其中和等式对某一对 \(i,j\) 成立,当且仅当存在一个非零向量 \(x\),使得 \(Ax=\lambda_{i-j+1}(A)x\), \(Bx=\lambda_j(B)x\) 以及 \((A+B)x=\lambda_i(A+B)x\). 如果 \(B\) 没有公共的特征向量,那么定理中的两个不等式都是严格不等式.
 
  证明: 设 \(x_1,\cdots,x_n\),\(y_1,\cdots,y_n\) 以及 \(z_1,\cdots,z_n\) 分别是 \(A\),\(B\) 以及 \(A+B\) 的标准正交的特征向量组,使得对每一个 \(i=1,\cdots,n\) 都有 \(Ax_i=\lambda_i(A)x_i\),\(By_i=\lambda_i(B)y_i\) 以及 \((A+B)z_i=\lambda_i(A+B)z_i\). 对给定的 \(i \in \{1,\cdots,n\}\) 以及任意的 \(j \in \{0,\cdots,n-i\}\), 设 \(S_1 =\mathrm{span} \{x_1,\cdots,x_{i+j}\}\),\(S_2 =\mathrm{span} \{y_1,\cdots,y_{n-j}\}\),\(S_3 =\mathrm{span} \{z_i,\cdots,z_n\}\). 那么
\begin{align}
\mathrm{dim}S_1 + \mathrm{dim}S_2 + \mathrm{dim}S_3 = (i+j) +(n-j) + (n-i+1) = 2n+1
\end{align}
所以有子空间的交引理知,存在一个单位向量 \(x \in S_1 \cap S_2 \cap S_3\). 借助Rayleigh 商定理三次就得到两个不等式
\begin{align}
\lambda_i(A+B) \leqslant x^*(A+B)x = x^*Ax + x^*Bx \leqslant \lambda_{i+j}(A) + \lambda_{n-j}(B)
\end{align}
第一个不等式由 \(x \in S_3\) 得出,而第二个不等式则分别由 \(x \in S_1\) 以及 \(x \in S_3\) 得出. ( \ref{e1} ) 中关于等式成立情形的命题由 Rayleigh 商定理中单位向量 \(x\) 成立等式的情形以及下诸不等式推出:\(x^*Ax \leqslant \lambda_{i+j}(A)\),\(x \in S_1\);\(x^*Bx \leqslant \lambda_{n-j}(B)\),\(x \in S_2\) 以及 $ \lambda_i(A+B) \leqslant x^*(A+B)x\(,\)x \in S_3$.
不等式 (\ref{e2}) 以及它们的等式成立的情形可通过将 (\ref{e1}) 应用于 \(-A,-B\) 以及 \(-(A+B)\) 得出:
\begin{align}
-\lambda_{n-i+1}(A+B) =\lambda_i(-A-B) \leqslant \lambda_{i+j}(-A) + \lambda_{n-j}(-B) = -\lambda_{n-i-j+1}(A) -\lambda_{j+1}(B)
\end{align}
如果我们令 \(i'=n-i+1\) 以及 \(j'=j+1\), 则上一个不等式就变成
\begin{align}
\lambda_{i'}(A+B) \geqslant \lambda_{i'-j'+1}(A) + \lambda_{j'}(B), \quad j'=1,\cdots, i'
\end{align}
这就是 (\ref{e2}).
如果 \(A\) 与 \(B\) 没有公共的特征向量,那么 (\ref{e1}) 和 (\ref{e2}) 中等式成立的必要条件就不可能满足.
 
Weyl 定理描述了一个 Hermite 矩阵 \(A\) 的特征值如果受到另一个 Hermite 矩阵 \(B\) 加性的扰动可能会发生什么. 关于扰动矩阵 \(B\) 的各种不同的条件会导致出现 (\ref{e1}) 和 (\ref{e2}) 的各种特例的不等式.

 

重要推论

接下来讲述的推论中,特征值仍是递增排序. 下面给个小例子,以便引出推论. 设 \(B \in M_n\) 是 Hermite 矩阵. 如果 \(B\) 恰好有 \(\pi\) 个正的特征值,而且恰好有 \(\nu\) 个负特征值,则 \(\lambda_{n-\pi}(B) \leqslant 0\) 以及 \(\lambda_{\nu+1}(B) \geqslant 0\), 其中的等式当且仅当 \(n>\pi + \nu\), 也即当且仅当 \(B\) 是奇异矩阵时成立.
 
  推论1: 设 \(A,B\in M_n\) 是 Hermite 矩阵. 如果 \(B\) 恰好有 \(\pi\) 个正的特征值,而且恰好有 \(\nu\) 个负的特征值,那么
\begin{align} \label{e11}
\lambda_i(A+B) \leqslant \lambda_{i+\pi}(A),\quad i=1,\cdots,n-\pi
\end{align}
其中等式对某个 \(i\) 成立,当且仅当 \(B\) 是奇异的且存在非零向量 \(x\), 使得 \(Ax=\lambda_{i+\pi}(A) x\),\(Bx=0\) 以及 \((A+B)x=\lambda _i(A+B)x\). 我们还有
\begin{align} \label{e12}
\lambda_{i-\nu}(A) \leqslant \lambda_i(A+B),\quad i=\nu +1,\cdots, n
\end{align}
其中等式对某个 \(i\) 成立,当且仅当 \(B\) 是奇异的且存在一个非零向量 \(x\), 使得 \(Ax=\lambda_{i-\nu}(A) x\),\(Bx=0\) 以及 \((A+B)x=\lambda _i(A+B)x\). 如果 (\ref{e11}) 中 \(B\) 是非奇异的或者式 (\ref{e12}) 中对 \(A\) 的每一个特征向量都有 \(Bx \neq 0\), 则上述两个不等式都是严格不等式.
 
对上述推论,再举个特例,设 \(B \in M_n\) 是 Hermite 矩阵. 如果 \(B\) 是奇异的,且 \(\mathrm{rank}\,B=r\),由于 \(B\) 是 Hermite 矩阵,则其可以酉对角化,所以 \(B\) 的非零特征值的个数肯定等于 \(r\), 则 \(\lambda_{n-r} (B) \leqslant 0\) 以及 \(\lambda_{r+1} \geqslant 0\)(在上个推论中令 \(A=0\) 也可得到同样的结果.)
 
  推论2: 设 \(A,B\in M_n\) 是 Hermite 矩阵. 假设 \(B\) 是奇异的,且 \(\mathrm{rank}\,B=r\),那么
\begin{align} \label{e13}
\lambda_i(A+B) \leqslant \lambda_{i+r}(A),\quad i=1,\cdots,n-r
\end{align}
其中等式对某个 \(i\) 成立,当且仅当 \(\lambda_{n-r}(B) = 0\),且存在一个非零向量 \(x\),使得 \(Ax=\lambda_{i+r}(A)x\),\(Bx=0\) 以及 \((A+B)x=\lambda_i(A+B)x\). 又有
\begin{align} \label{e14}
\lambda_{i-r}(A) \leqslant \lambda_i(A+B),\quad i=r+1,\cdots,n
\end{align}
其中等式对某个 \(i\) 成立,当且仅当 \(\lambda_{i+1}(B)=0\),且存在一个非零向量 \(x\),使得 \(Ax=\lambda_{i-r}(A)x\),\(Bx=0\) 以及 \((A+B)x=\lambda _i(A+B)x\). 如果 \(A\) 的每个特征向量 \(x\) 都有 \(Bx \neq 0\), 则上述两个不等式都是严格不等式.
 
设 \(B \in M_n\) 是 Hermite 矩阵. 如果 \(B\) 恰有一个正的特征值且恰有一个负的特征值,则 \(\lambda_2(B) \geqslant 0\) 且 \(\lambda_{n-1}(B) \leqslant 0\),其中的等式当且仅当 \(n>2\) 时成立.
 
  推论3: 设 \(A,B\in M_n\) 是 Hermite 矩阵. 假设 \(B\) 恰有一个正的特征值且恰有一个负的特征值,那么
\begin{align}
& \lambda_1(A+B) \leqslant \lambda_2(A) \notag \\ \label{e8}
& \lambda_{i-1}(A) \leqslant \lambda_i(A+B) \leqslant \lambda_{i+1}(A), \quad i=2,\cdots, n-1 \\
& \lambda_{n-1}(A) \leqslant \lambda_n(A+B) \notag
\end{align}
等式对 \(\pi =\nu =1\) 成立,例如, \(\lambda_i(A+B) = \lambda_{i+1}(A)\) 当且仅当 \(n>2\) 且存在一个非零向量 \(x\),使得 \(Ax=\lambda_{i+1}(A)x\),\(Bx=0\) 以及 \((A+B)x=\lambda_i(A+B)x\) 时成立. 如果 \(n=2\) 或者对 \(A\) 的每个特征向量 \(x\) 有 \(Bx \neq 0\),那么上述三个不等式都是严格的不等式.
 
假设 \(z \in \mathbb{C}^n\) 是非零的且 \(n \geqslant 2\). 则 \(zz^*\) 的秩为 \(1\) 且只有一个正的特征值,所以 \(\lambda_{n-1}(zz^*)=0=\lambda_1(zz^*)\).
下面的推论称为关于 Hermite 矩阵的秩 \(1\)-Hermite 摄动的交错定理.
 
  推论4:设 \(n \geqslant 2\),\(A \in M_n\) 是 Hermite 矩阵,又设 \(z \in \mathbb{C}^n\) 是非零向量. 那么
\begin{align}
& \lambda_i(A) \leqslant \lambda_i(A+zz^*) \leqslant \lambda_{i+1}(A),\quad i=1,\cdots,n-1 \\
& \lambda_n(A) \leqslant \lambda_n (A+zz^*) \notag
\end{align}
上式中的等式对 \(\pi=1\) 以及 \(\nu =0\) 成立,例如,\(\lambda_i(A+zz^*) = \lambda_{i+1}(A)\) 当且仅当存在一个非零向量 \(x\),使得 \(Ax=\lambda_{i+1}(A)x\),\(z^*x=0\) 以及 \((A+zz^*)x=\lambda_i(A+zz^*)x\). 又有
\begin{align}
& \lambda_1(A-zz^*) \leqslant \lambda_1(A) \\
& \lambda_{i-1}(A) \leqslant \lambda_i (A-zz^*) \leqslant \lambda_i(A),\quad i=2,\cdots,n \notag
\end{align}
上式中的等式对 \(\pi=0\) 以及 \(\nu =1\) 成立. 如果 \(A\) 没有特征向量与 \(z\) 正交,那么上边每一个不等式都是严格的不等式.
 
设 \(B \in M_n\) 是半正定的,则 \(\lambda_1(B)=0\) 当且仅当 \(B\) 是奇异的.
下面的推论称为单调定理.
 
  推论5:设 \(A,B \in M_n\) 是 Hermite 矩阵,并假设 \(B\) 是半正定的. 那么
\begin{align}
\lambda_i(A) \leqslant \lambda_i(A+B),\quad i=1,\cdots,n
\end{align}
其中等式对某个 \(i\) 成立,当且仅当 \(B\) 是奇异的,且存在一个非零向量 \(x\),使得 \(Ax=\lambda_i(A)x\),\(Bx=0\) 以及 \((A+B)x=\lambda_i(A+B)x\). 又如果 \(B\) 是正定的,那么
\begin{align}
\lambda_i(A) < \lambda_i(A+B),\quad i=1,\cdots,n
\end{align}
 
设给定 \(y \in \mathbb{C}^n\) 以及 \(a \in \mathbb{R}\),又设 \(\mathcal{K} = \begin{bmatrix} 0_n & y \\ y^* & a \end{bmatrix} \in M_{n+1}\). 由加边矩阵的行列式的 Cauchy 展开式 \(\mathrm{det} \begin{bmatrix} A & x \\ y^T & a \end{bmatrix} =a\,\mathrm{det} \,A -y^T(\mathrm{adj}\,A)x\) 得:\(\mathcal{K}\) 的特征值是 \((a \pm \sqrt{a^2+4y^*y})/2\) 再加上 \(n-1\) 个为零的特征值. 如果 \(y \neq 0\),推出结论:\(\mathcal{K}\) 恰好有一个正的特征值,也恰好有一个负的特征值.
 
Weyl 不等式以及它们的推论考虑的是 Hermite 矩阵的加性 Hermite 摄动. 从 Hermite 矩阵中取出一个主子矩阵,或者通过对它加边作成一个更大的 Hermite 矩阵,都会出现加性的特征值不等式. 下面的结果是关于加边的 Hermite 矩阵的 Cauchy 交错定理,有时它也称为分离定理.
 
  定理2(Cauchy): 设 \(B \in M_n\) 是 Hermite 矩阵,设给定 \(y \in \mathbb{C}^n\) 以及 \(a \in \mathbb{R}\),又设 \(A = \begin{bmatrix} B & y \\ y^* & a \end{bmatrix} \in M_{n+1}\). 那么
\begin{align} \label{e18}
\lambda_1(A) \leqslant \lambda_1(B) \leqslant \lambda_2(A) \leqslant \cdots \leqslant \lambda_n(A) \leqslant \lambda_n(B) \leqslant \lambda_{n+1}(A)
\end{align}
其中 \(\lambda_i(A)=\lambda_i(B)\) 成立的充分必要条件是:存在一个非零的 \(z \in \mathbb{C}^n\),使得 \(Bz=\lambda_i(B)z\),\(y^*z=0\),以及 \(Bz=\lambda_i(A)z\);\(\lambda_i(B)=\lambda_{i+1}(A)\) 成立的充分必要条件是:存在一个非零的 \(z \in \mathbb{C}^n\),使得 \(Bz=\lambda_i(B)z\),\(y^*z=0\),以及 \(Bz=\lambda_{i+1}(A)z\). 如果 \(B\) 没有与 \(y\) 正交的特征向量,则上式中的每一个不等式都是严格不等式.
 
  证明: 如果我们用 \(A+\mu I_{n+1}\) 代替 \(A\)(这就用 \(B+\mu I\) 代替了 \(B\)),那么结论中有序排列中的特征值的交错性不变. 于是,不失一般性,可以假设 \(B\) 与 \(A\) 是正定的. 考虑 Hermite 矩阵 $\mathcal{H} =\begin{bmatrix} B & 0 \\ 0 & 0_1 \end{bmatrix} $ 以及 $\mathcal{K}= \begin{bmatrix} 0_n & y \\ y^* & a \end{bmatrix} $,对它们有 \(A=\mathcal{H}+\mathcal{K}\). \(\mathcal{H}=B\oplus [0]\) 的有序排列的特征值是 \(\lambda_1(\mathcal{H})=0 < \lambda_1(B)=\lambda_2(\mathcal{H}) \leqslant \lambda_2(B) = \lambda_3(\mathcal{H}) \leqslant \cdots\),即对所有 \(i=1,\cdots,n\) 都有 \(\lambda_{i+1}(\mathcal{H}) = \lambda_i(B)\). 由于 $\mathcal{K} $ 恰好有一个正的特征值和一个负的特征值,故而不等式 (\ref{e8}) 确保
\begin{align} \label{e19}
\lambda_i(A) = \lambda_{i}(\mathcal{H} + \mathcal{K}) \leqslant \lambda_{i+1}(\mathcal{H}) = \lambda_i(B), \quad i=1,\cdots,n
\end{align}
对一个给定的 \(i\),(\ref{e19}) 中等式成立的必要与充分条件表述在推论 3 中:存在一个非零的 \(x \in \mathbb{C}^{n+1}\),使得 \(\mathcal{H}x = \lambda_{i+1}(\mathcal{H})x\),\(\mathcal{K}x=0\),\(Ax=\lambda_i(A)x\). 如果我们用 \(z \in \mathbb{C}^n\) 来分划 $x= \begin{bmatrix} z \\ \xi \end{bmatrix} $ 并利用恒等式 \(\lambda_{i+1}(\mathcal{H}) = \lambda_i(B)\),计算揭示这些条件对于以下结论是等价的:存在一个非零的 \(z \in \mathbb{C}^n\),使得 \(Bz=\lambda_i(B)z\),\(y^*z=0\),以及 \(Bz=\lambda_i(A)z\). 特别地,如果 \(B\) 没有与 \(y\) 正交的特征向量,那么就不存在 \(i\),使得必要条件 \(z \neq 0\),\(Bz=\lambda_i(B)z\) 以及 \(y^*z=0\) 能得到满足.
对 \(i=1,\cdots,n\),不等式 \(\lambda_i(B) \leqslant \lambda_{i+1}(A)\) 可以通过将 (\ref{e19}) 应用于 \(-A\) 得到:
\begin{align} \label{e20}
-\lambda_{(n+1)-i+1}(A) = \lambda_i(-A) \leqslant \lambda_i(-B) = -\lambda_{n-i+1}(B)
\end{align}
如果置 \(i'=n-i+1\),我们就对 \(i'=1,\cdots,n\) 得到等价的不等式 \(\lambda_{i'+1}(A) \geqslant \lambda_{i'}(B)\). (\ref{e20}) 中等式出现的情形再次由推论 3 得出.
 
我们已经讨论了特征值交错定理的两个例子:如果一个给定的 Hermite 矩阵或者通过增加一个秩 1 的 Hermite 矩阵或者通过加边来加以修改,那么新旧特征值必定是交错的. 下面不加证明的给出这些定理的逆.
 
  定理3: 设 \(\lambda_1,\cdots, \lambda_n\) 以及 \(\mu_1,\cdots, \mu_n\) 是满足交错不等式
\begin{align}
\lambda_1 \leqslant \mu_1 \leqslant \lambda_2 \leqslant \mu_2 \leqslant \cdots \leqslant \lambda_n \leqslant \mu_n
\end{align}
的实数. 设 \(\Lambda= \mathrm{diag} \{\lambda_1,\cdots, \lambda_n\}\). 那么存在一个实向量 \(z \in \mathbb{R}^n\), 使得 \(\Lambda+zz^*\) 的特征值是 \(\mu_1,\cdots,\mu_n\).
 
 


应该知道什么

  • Weyl 定理:$\lambda_i(A+B) \leqslant \lambda_{i+j}(A) + \lambda_{n-j} (B) $ 与 \(\lambda_{i-j+1}(A)+\lambda_j(B) \leqslant \lambda_i(A+B)\)
  • Hermite 矩阵非零特征值的个数等于其秩的大小
  • 假设 \(z \in \mathbb{C}^n\) 是非零的且 \(n \geqslant 2\). 则 \(zz^*\) 的秩为 \(1\) 且只有一个正的特征值
  • 如果一个给定的 Hermite 矩阵或者通过增加一个秩 1 的 Hermite 矩阵或者通过加边来加以修改,那么新旧特征值必定是交错的.

Hermite 矩阵的特征值不等式的更多相关文章

  1. Hermite 矩阵及其特征刻画

    将学习到什么 矩阵 \(A\) 与 \(\dfrac{1}{2}(A+A^T)\) 两者生成相同的二次型,而后面那个矩阵是对称的,这样以来,为了研究实的或者复的二次型,就只需要研究由对称矩阵生成的二次 ...

  2. 对称矩阵、Hermite矩阵、正交矩阵、酉矩阵、奇异矩阵、正规矩阵、幂等矩阵

    2016-01-27 21:03 524人阅读 评论(0) 收藏 举报 分类: 理论/笔记(20) 版权声明:本文为博主原创文章,转载请注明出处,谢谢! 题目:对称矩阵.Hermite矩阵.正交矩阵. ...

  3. 【matlab】 QR分解 求矩阵的特征值

    "QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = ...

  4. 矩阵的特征值和特征向量的雅克比算法C/C++实现

    矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代 ...

  5. 矩阵的基本性质 之 对称矩阵,Hermite矩阵,正交矩阵,酉矩阵

    1.对称矩阵 2.Hermite矩阵 3.正交矩阵 4.酉矩阵

  6. hermite矩阵

    在读线代书.因为之前并没有上过线性代数的课.所以决定把基础打牢牢. 读书的时候当然会出现不懂的概念和术语或者定理什么的.所以在这记录一下啦--- hermit矩阵要理解它好像先要知道什么是共轭(con ...

  7. GNU scientific library

    GNU scientific library 是一个强大的C,C++数学库.它涉及的面很广,并且代码效率高,接口丰富.正好最近做的一个项目中用到多元高斯分布,就找到了这个库. GNU scientif ...

  8. GSL--GNU Scientific Library 小记

    摘自http://qianjigui.iteye.com/blog/847612 GSL(GNU Scientific Library)是一个 C 写成的用于科学计算的库,下面是一些相关的包 Desi ...

  9. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

随机推荐

  1. C#基础:线程之异步委托

    线程:是程序中独立的指令流.在我们熟悉的Visual Studio编辑器中输入C# 代码的时候,系统会自动分析代码,提示你输入的代码出现的各种错误,这是一个后台线程完成的. 创建线程的一种简单的方式就 ...

  2. JAVA基础--JAVA API集合框架16

    一.Map集合 1. map集合介绍 Collection集合的特点: 集合中存储的所有元素都是单一元素,元素和元素之间没有必然的关系.因此我们把Collection集合也称为单列集合. Map集合: ...

  3. Linux环境下Nginx及负载均衡

    Nginx 简介 Nginx 是一个高性能的 HTTP 和反向代理 Web 服务器,同时也提供了 IMAP/POP3/SMTP 服务.前向代理作为客户端的代理,服务端只知道代理的 IP 地址而不知道客 ...

  4. 洛谷 - P1414 - 又是毕业季II - 因数

    https://www.luogu.org/problemnew/show/P1414 以后这种gcd的还是尽可能往分解那里想一下. 先把每个数分解,他的所有因子都会cnt+1. 然后从最大的可能因子 ...

  5. tinyxml一些应注意的问题

     今天在对使用tinyxml库的程序调试的时候,出现的一些问题让人很纠结,特记以此... 在对TixmlDocument创建时我是用new创建的,然后在用完之后我用delete释放掉,可是用gdb调试 ...

  6. vc编程中出现 fatal error C1010: 在查找预编译头时遇到意外的文件结尾。是否忘记了向源中添加“#include "stdafx.h"”?

    解决办法菜单--〉项目--〉设置,出现“项目设置”对话框,左边展开项目,在“源文件”中找到出错的文件,然后在右边选择“C/C++”属性 页,在Category下拉框中选择“Precompiled He ...

  7. Codeforces Round #377 (Div. 2)A,B,C,D【二分】

    PS:这一场真的是上分场,只要手速快就行.然而在自己做的时候不用翻译软件,看题非常吃力非常慢,还有给队友讲D题如何判断的时候又犯了一个毛病,一定要心平气和,比赛也要保证,不要用翻译软件做题: Code ...

  8. [Xcode 实际操作]八、网络与多线程-(3)使用UIApplication对象拨打电话

    目录:[Swift]Xcode实际操作 本文将演示如何使用应用程序单例对象,拨打电话的功能. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] 注:需要使用真机进行测 ...

  9. TensorFlow数据集(一)——数据集的基本使用方法

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 例子:从一个张量创建一个数据集,遍历这个数据集,并对每个输入输出y = x^2 的值. #!/usr/bin/en ...

  10. bzoj2825:[AHOI2012]收集资源

    传送门 看到数据范围这么小,就没想过暴力的办法么 考虑肯定是从近走到远,所以走的点之间一定没有其他的点,所以我们就可以暴力的建图,然后暴力的去dfs就好了 代码: #include<cstdio ...