[SDOI2019] 热闹又尴尬的聚会
热闹度\(p\)子图中最小的度数,尴尬度\(q\)独立集大小,之间的约束
\[
\begin{aligned}
\lfloor n/(p+1)\rfloor\le q
&\rightarrow \lceil(n-p-1+1)/(p+1)\rceil\le q\\
&\rightarrow \lceil(n-p)/(p+1)\rceil\le q\\
&\rightarrow (n-p)/(p+1)\le q\\
&\rightarrow n-p\le pq+q\\
&\rightarrow n<(p+1)(q+1)
\end{aligned}
\]
显然\(\lfloor n/(q+1)\rfloor\le p\)也能推出一样的不等式。
我们每次从图上选出度数最小的点,记录它的度数\(d_i\)并删除相邻的\(d_i\)个点,如此反复至无点可选,设进行了\(q\)次,显然
\[
\sum_{i=1}^q (d_i+1)=n
\]
显然存在一个热闹度\(p\)是$\max d_i $的方案1,那么
\[
(\max d_i+1)q\ge \sum_{i=1}^q(d_i+1)=n\rightarrow (\max d_i+1)(q+1)>n
\]
是满足约束的。
神题啊神题,代码留坑
设在点\(x\)取到\(\max d_i\),考虑将删除的与\(x\)相邻的那些点,显然它们的度数\(\ge\max d_i\),故方案就是与 点\(x\)和\(x\)相邻的这些点 相邻且未被删除的所有点,热闹度\(p=\max d_i\)。↩
[SDOI2019] 热闹又尴尬的聚会的更多相关文章
- [SDOI2019]热闹又尴尬的聚会 构造,贪心
[SDOI2019]热闹又尴尬的聚会 链接 luogu loj 思路 第一问贪心?的从小到大删除入度最小的点,入度是动态的,打个标记. 当然不是最大独立集. 第二问第一问的顺序选独立集,不行就不要.选 ...
- SDOI2019热闹又尴尬的聚会
P5361 [SDOI2019]热闹又尴尬的聚会 出题人用脚造数据系列 只要将\(p\)最大的只求出来,\(q\)直接随便rand就能过 真的是 我们说说怎么求最大的\(p\),这个玩意具有很明显的单 ...
- 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会
原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...
- [洛谷P5361][SDOI2019]热闹又尴尬的聚会:构造题
分析 构造方法 (截图自UOJ群) 可以使用std::set维护这个过程,不过据说可以做到\(O(n+m)\).. 正确性证明 题目中的要求等价于\((p+1)(q+1) > n\) 设每次找出 ...
- [SDOI2019]热闹又尴尬的聚会(图论+set+构造)
据说原数据可以让复杂度不满的暴力O(Tn^2)过掉……O(Tn^2)方法类似于codeforces一场div2的E题 有一种比较好的方法:每次找出原图G中度最小的点加入q,然后将相邻的点加入新图G'. ...
- vijos2054 SDOI2019 热闹的聚会与尴尬的聚会
题目链接 思路 首先观察题目最后的式子\(\lfloor \frac{n}{p + 1} \rfloor \le q\) 并且\(\lfloor \frac{n}{q+1} \rfloor \le p ...
- [luogu5361]热闹的聚会与尴尬的聚会
由于两者是独立的,我们希望两者的$p$和$q$都最大 考虑最大的$p$,先全部邀请,此时要增大$p$显然必须要删去当前度数最小的点,不断删除之后将每一次度数最小值对答案取max即可 对于$q$也即最大 ...
- SDOI2019 Round2
这鬼家伙已经咕了好久了-- SDOIR2的题目挺好玩的- 快速查询(???) 不难发现所有的操作都可以通过区间打Tag实现 那么可以维护两个标记\(a,b\)表示序列中的数为\(x\)时实际表示的值是 ...
- Solution Set - 《赏竹而格之》
1.「GXOI / GZOI 2019」「洛谷 P5304」旅行者 Link & Submission. 经典二进制分组,没啥好说的. 2. 「SDOI 2019」「洛谷 P5361」 ...
随机推荐
- 开源服务器监控工具 — JavaMelody 类 jvm 内在性能(转)
开源服务器监控工具 — JavaMelody JavaMelody它能够监测Java或Java EE应用程序服务器,并以图表的方式显示:Java内存和Java CPU使用情况,用户Sessio ...
- Spring MVC的映射请求
一.SpringMVC常用注解 @Controller 声明Action组件 @Service 声明Service组件 @Service("myMovieLister" ...
- Spring中的面向切面编程(AOP)简介
一.什么是AOP AOP(Aspect-Oriented Programming, 面向切面编程): 是一种新的方法论, 是对传统 OOP(Object-Oriented Programming, 面 ...
- c++通用写文件调试代码
#include <stdio.h>#include <sstream>#include <iostream> std::stringstream strs;str ...
- git branch 分支创建时间排序
git branch日期排序 vi ~/.gitconfig [alias]lb = !"for k in `git branch -a|perl -pe s/^..//`;do echo ...
- Xcode使用的一些小技巧,值得一看。
有时我们需要对一个已有项目进行重构,改进设计,提高代码质量.以下几个Xcode 4中的功能,会使重构的工作变得轻松很多. 1.打开项目我的项目是Xcode3.x中编辑的,在用Xcode 4 打开时出现 ...
- Java诊断工具Arthas
Java诊断工具Arthas 1. Arthas简介 Arthas是阿里开源的一个线上java诊断工具,发现阿里还是挺喜欢开源一些技术的,造福人类.昨天试用了一下,发现真是强大,解决了我工作两年的很多 ...
- 如何在时间复杂度为O(n)空间复杂度为O(1)的情况下完成链表的逆置
问题如题目,首先分析,链表的反转的空间复杂度如果为常数级,那么不可能完成从堆中申请数据来完成链表的反转工作,所以问题就转化为了如何将原链表修改/拆解为逆置的链表: 函数形式假定如下 void Inv ...
- UVA10129 Play on Words —— 欧拉回路
题目链接:https://vjudge.net/problem/UVA-10129 代码如下: // UVa10129 Play on Words // Rujia Liu // 题意:输入n个单词, ...
- 操作Zookeeper
可以通过图形化界面进行操作使用的工具是 zookeeper-dev-ZooInspector.jar 连接到我的zk之后: 1.Java操作zk 依赖: <dependency> < ...