热闹度\(p\)子图中最小的度数,尴尬度\(q\)独立集大小,之间的约束
\[
\begin{aligned}
\lfloor n/(p+1)\rfloor\le q
&\rightarrow \lceil(n-p-1+1)/(p+1)\rceil\le q\\
&\rightarrow \lceil(n-p)/(p+1)\rceil\le q\\
&\rightarrow (n-p)/(p+1)\le q\\
&\rightarrow n-p\le pq+q\\
&\rightarrow n<(p+1)(q+1)
\end{aligned}
\]

显然\(\lfloor n/(q+1)\rfloor\le p\)也能推出一样的不等式。

我们每次从图上选出度数最小的点,记录它的度数\(d_i\)并删除相邻的\(d_i\)个点,如此反复至无点可选,设进行了\(q\)次,显然

\[
\sum_{i=1}^q (d_i+1)=n
\]

显然存在一个热闹度\(p\)是$\max d_i $的方案1,那么
\[
(\max d_i+1)q\ge \sum_{i=1}^q(d_i+1)=n\rightarrow (\max d_i+1)(q+1)>n
\]

是满足约束的。

神题啊神题,代码留坑


  1. 设在点\(x\)取到\(\max d_i\),考虑将删除的与\(x\)相邻的那些点,显然它们的度数\(\ge\max d_i\),故方案就是与 点\(x\)和\(x\)相邻的这些点 相邻且未被删除的所有点,热闹度\(p=\max d_i\)。

[SDOI2019] 热闹又尴尬的聚会的更多相关文章

  1. [SDOI2019]热闹又尴尬的聚会 构造,贪心

    [SDOI2019]热闹又尴尬的聚会 链接 luogu loj 思路 第一问贪心?的从小到大删除入度最小的点,入度是动态的,打个标记. 当然不是最大独立集. 第二问第一问的顺序选独立集,不行就不要.选 ...

  2. SDOI2019热闹又尴尬的聚会

    P5361 [SDOI2019]热闹又尴尬的聚会 出题人用脚造数据系列 只要将\(p\)最大的只求出来,\(q\)直接随便rand就能过 真的是 我们说说怎么求最大的\(p\),这个玩意具有很明显的单 ...

  3. 【题解】Luogu P5361 [SDOI2019]热闹又尴尬的聚会

    原题传送门 构造题. 明显p,q都越大越好 我们考虑每次取出度最小的点,加到尴尬聚会的集合中(因为把与它相邻的点全删了,不珂能出现认识的情况),把它自己和与自己相连的点从图上删掉(边也删掉),记下这个 ...

  4. [洛谷P5361][SDOI2019]热闹又尴尬的聚会:构造题

    分析 构造方法 (截图自UOJ群) 可以使用std::set维护这个过程,不过据说可以做到\(O(n+m)\).. 正确性证明 题目中的要求等价于\((p+1)(q+1) > n\) 设每次找出 ...

  5. [SDOI2019]热闹又尴尬的聚会(图论+set+构造)

    据说原数据可以让复杂度不满的暴力O(Tn^2)过掉……O(Tn^2)方法类似于codeforces一场div2的E题 有一种比较好的方法:每次找出原图G中度最小的点加入q,然后将相邻的点加入新图G'. ...

  6. vijos2054 SDOI2019 热闹的聚会与尴尬的聚会

    题目链接 思路 首先观察题目最后的式子\(\lfloor \frac{n}{p + 1} \rfloor \le q\) 并且\(\lfloor \frac{n}{q+1} \rfloor \le p ...

  7. [luogu5361]热闹的聚会与尴尬的聚会

    由于两者是独立的,我们希望两者的$p$和$q$都最大 考虑最大的$p$,先全部邀请,此时要增大$p$显然必须要删去当前度数最小的点,不断删除之后将每一次度数最小值对答案取max即可 对于$q$也即最大 ...

  8. SDOI2019 Round2

    这鬼家伙已经咕了好久了-- SDOIR2的题目挺好玩的- 快速查询(???) 不难发现所有的操作都可以通过区间打Tag实现 那么可以维护两个标记\(a,b\)表示序列中的数为\(x\)时实际表示的值是 ...

  9. Solution Set - 《赏竹而格之》

    1.「GXOI / GZOI 2019」「洛谷 P5304」旅行者   Link & Submission.   经典二进制分组,没啥好说的. 2. 「SDOI 2019」「洛谷 P5361」 ...

随机推荐

  1. EasyDarwin手机直播转发快速显示问题之音频处理过程

    前言 在我们前面一篇<EasyDarwin手机直播是如何实现的快速显示视频的方法>中,我们描述到了EasyDarwin流媒体服务器端是如何对视频H.264进行缓冲,再以最快的方式将最新的视 ...

  2. Scrapyd部署

    从github(https://github.com/scrapy/scrapyd)下载安装包放到D:\python\Lib\site-packages\ 解压压缩包:cd 到解压目录 python ...

  3. The JSP specification requires that an attribute name is preceded by whitespace--异常

    异常信息:org.apache.jasper.JasperException: /pages/selectedCourse.jsp (line: 4, column: 39) The JSP spec ...

  4. 把tomcat写到Windows系统服务器的服务中

    首先准备一个免安装的tomcat服务器,和一个Windows系统. 在“C:\Windows\SysWOW64”中找到cmd.exe的执行文件,以管理员身份启动: 进入到tomcat的bin文件夹, ...

  5. swift-ios开发pod的使用(1)

    MAC安裝CocoaPods   http://www.cnblogs.com/surge/p/4436360.html 请注意我的环境,这个很重要 xcode版本7.3.2   mac 版本OS X ...

  6. 查询所有联系人并选中显示 contentprovider

    <!-- 读取联系人记录的权限 --> <uses-permission android:name="android.permission.READ_CONTACTS&qu ...

  7. Service的两种启动方式

    今天又写Service,提示覆写onBind(),想起Android好像是有个叫做Binder的IPC机制. Service里面有一个onBind(),一个onStartCommand(),两者都能启 ...

  8. 「LuoguP2252」 取石子游戏(威佐夫博弈

    [P2252]取石子游戏 - 洛谷 题目背景 无 题目描述 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以 ...

  9. POJ1741:Tree

    浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html 题目传送门:http://poj.org/problem?id=1741 这是一道树分治的模板题 ...

  10. tinymix

    1. tinymix:列出所有的 sound kcontrol 2. tinymix "Capture Volume":读出里面的值 3. tinymix "Captur ...