BZOJ3325 [Scoi2013]密码 【manacher】
题目
Fish是一条生活在海里的鱼。有一天他很无聊,就到处去寻宝。他找到了位于海底深处的宫殿,但是一扇带有密码锁的大门却阻止了他的前进。通过翻阅古籍,Fish 得知了这个密码的相关信息:
该密码的长度为N。
密码仅含小写字母。
以每一个字符为中心的最长回文串长度。
以每两个相邻字符的间隙为中心的最长回文串长度。
很快Fish 发现可能有无数种满足条件的密码。经过分析,他觉得这些密码中字典序最小的一个最有可能是答案,你能帮他找到这个密码么?
注意:对于两个串A和B,如果它们的前i个字符都相同,而A的第i+1个字符比B的第i+1个字符小,那么认为是则称密码A 的字典序小于密码B 的字典序,例如字符串abc 字典序小于字符串acb。如果密码A的字典序比其他所有满足条件的密码的字典序都小,则密码A是这些密码中字典序最小的一个。
输入格式
输入由三行组成。
第一行仅含一个整数N,表示密码的长度。
第二行包含N 个整数,表示以每个字符为中心的最长回文串长度。
第三行包含N - 1 个整数,表示每两个相邻字符的间隙为中心的最长回文串长度。
对于20% 的数据,1 <= n <= 100。
另有30% 的数据,1 <= n <= 1000。
最后50% 的数据,1 <= n <= 10^5。
输出格式
输出仅一行。输出满足条件的最小字典序密码。古籍中的信息是一定正确的,故一定存在满足条件的密码。
输入样例
3
1 1 1
0 0
输出样例
abc
提示
题解
根据贪心的思想,我们当然是每个位置在满足条件下尽量选小的
我们从左开始选字符
每到达一个位置,由于其之前的位置已经确定,由回文串我们可以确定后面对应的位置
又由于每个最长回文串的端点处的下一位一定是不同的,可以用一个数组记录每个位置不能取的值
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int ans[maxn],n;
int R[maxn],r[maxn];
int isn[maxn][26];
int main(){
memset(ans,-1,sizeof(ans));
n = read();
for (int i = 1; i <= n; i++) R[i] = (read() >> 1) + 1;
for (int i = 1; i < n; i++) r[i] = read() >> 1;
int mr = 1; ans[1] = 0;
for (int i = 1; i <= n; i++){
if (ans[i] == -1) for (int j = 0; j < 26; j++) if (!isn[i][j]){
ans[i] = j;
mr = i;
break;
}
while (mr < i + R[i] - 1) ++mr,ans[mr] = ans[2 * i - mr];
while (i < n && mr < i + r[i]) ++mr,ans[mr] = ans[2 * i - mr + 1];
if (i + R[i] <= n && i - R[i] > 0)
isn[i + R[i]][ans[i - R[i]]] = true;
if (i < n && i + r[i] + 1 <= n && i - r[i] > 0)
isn[i + r[i] + 1][ans[i - r[i]]] = true;
}
for (int i = 1; i <= n; i++) putchar(ans[i] + 'a');
return 0;
}
BZOJ3325 [Scoi2013]密码 【manacher】的更多相关文章
- 【BZOJ3325】[Scoi2013]密码 Manacher
[BZOJ3325][Scoi2013]密码 Description Fish是一条生活在海里的鱼.有一天他很无聊,就到处去寻宝.他找到了位于海底深处的宫殿,但是一扇带有密码锁的大门却阻止了他的前进. ...
- BZOJ3325 [Scoi2013]密码【Manacher】【构造】【贪心】
Description Fish是一条生活在海里的鱼.有一天他很无聊,就到处去寻宝.他找到了位于海底深处的宫殿,但是一扇带有密码锁的大门却阻止了他的前进.通过翻阅古籍,Fish 得知了这个密码的相关信 ...
- 2019.03.28 bzoj3325: [Scoi2013]密码(manacher+模拟)
传送门 题意: 现在有一个nnn个小写字母组成的字符串sss. 然后给你nnn个数aia_iai,aia_iai表示以sis_isi为中心的最长回文串串长. 再给你n−1n-1n−1个数bib_ ...
- BZOJ3325 : [Scoi2013]密码
从以每一位为中心的回文串长度可以用Manacher倒推出$O(n)$对相等和不等关系. 将相等的用并查集维护,不等的连边. 然后输出方案时若还没被染过色,则求一个mex. #include<cs ...
- 【bzoj3325】[Scoi2013]密码 逆模拟Manacher
题目描述 给出一个只包含小写字母的字符串的长度.以每一个字符为中心的最长回文串长度.以及以每两个相邻字符的间隙为中心的最长回文串长度,求满足条件的字典序最小的字符串. 输入 输入由三行组成.第一行仅含 ...
- Manacher思想 SCOI2013 密码
关于$\mathrm{Manacher}$算法,网上介绍已经很全面 这里说一下自己的理解 这里的$rad$数组:$rad_i$表示以以位置i为中心的最长回文串的回文半径(不包括i这个点). 朴素的思想 ...
- BZOJ 3325 [SCOI2013]密码 (逆模拟Manacher+构造)
题目大意:给你一个字符串每个位置和相邻两个位置为回文中心的最长回文串长度,让你构造一个合法的字典序最小的字符串 挺有意思的构造题 首先按照$Manacher$的思想还原$p$数组 定义$f_{ij}$ ...
- SCOI2013 密码
题目描述: Fish是一条生活在海里的鱼.有一天他很无聊,就到处去寻宝.他找到了位于海底深处的宫殿,但是一扇带有密码锁的大门却阻止了他的前进. 通过翻阅古籍,Fish 得知了这个密码的相关信息: 该密 ...
- luogu P3279 [SCOI2013]密码
LINK:密码 给出来manacher的数组 让还原出字典序最小的字符串.字符集为小写字母. 当没有任何限制时 放字典序最小的'a'.如果此时还在最长的回文串中的话那么 直接得到当前字符即可. 注意这 ...
随机推荐
- PHP生成类似类似优酷、腾讯视频等其他视频链的ID
不知道你注意了没有,类似优酷.腾讯视频等其他视频链接似乎类似这样的 http://v.youku.com/v_show/id_XNjA5MjE5OTM2.html 注意id_xxx那段,是不是看不懂了 ...
- GCD 代码以及GCD思想
# 欧几里得算法 现在,我们来学习一下欧几里得算法. 欧几里得算法又称辗转相除法,主要用于算求两个正数之间的最大公约数.对于最大公约数这个名称,其英文名称为(Greatest Common Divis ...
- group - 用户组文件
DESCRIPTION(描述) /etc/group 是一个ASCII码的文件,它定义了用户所属的组.文件中每行包括一条记录,其格式如下: group_name:passwd:GID:user_lis ...
- event loop、进程和线程、任务队列
本文原链接:https://cloud.tencent.com/developer/article/1106531 https://cloud.tencent.com/developer/articl ...
- appium---常用的adb命令
在测试android-app的时候,adb命令可以帮助我们解决许多问题 什么是adb Android Debug Bridge,我们一般简称为adb,主要存放在sdk安装目录下的platform-to ...
- Spring学习笔记之Spring概述
概述 Spring是一个java应用最广的开源框架,它是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Deve ...
- 【转】Qt Socket简单通信
最近要用到Qt的Socket部分,网上关于这部分的资料都比较复杂,我在这总结一下,把Socket的主要部分提取出来,实现TCP和UDP的简单通信. 1.UDP通信 UDP没有特定的server端和cl ...
- 学习笔记(二):使用 TensorFlow 的起始步骤(First Steps with TensorFlow)
目录 1.工具包 TensorFlow 张量 (Tensor) 图 (graph) TensorBoard 2.tf.estimator API Estimator 预创建的 Estimator (p ...
- 【启发式拆分】bzoj4059: [Cerc2012]Non-boring sequences
这个做法名字是从武爷爷那里看到的…… Description 我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短.一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子 ...
- knn算法之预测数字
训练算法并对算法的准确值准确率进行估计 #导入相应模块 import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%mat ...